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Abstract. Building design can be supported effectively by computer-aided design exploration.
This paper investigates optimisation based on a mixed-integer super-structure representation of
the search space of building spatial designs. It can take into account parametric as well as topo-
logical variations. In the suggested super-structure – the so-called supercube representation –
discrete and continuous variables determine the existence, respectively, dimensioning of spaces
of the building spatial design. Constraints are formulated as closed form equations and can be
used to numerically assess the feasibility of designs. A population-based constraint-handling
evolutionary strategy is developed. In the constraint handling repair and penalty methods are
combined in a domain specific way. The method is tested on different search space sizes and
first promising results are reported.
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1 INTRODUCTION

The use of automated search for finding optimal buildings with respect to various criteria,
such as, e.g. structural strength, and stiffness; and energy performance will be an important
research topic in the 21st century. Many physical phenomena can be modelled and studied by
computer simulations, e.g., mechanical stress, heat transport, and light radiation. However, via
these means, search for improvement is still widely limited to a trial and error approach. New
research is required for enabling the search in larger design spaces.

This paper is about the foundations of such research. Namely, it will address the question
how to represent a search space for optimisation and how search methods can navigate this
design space in search for better designs. For this, global optimisation methods for large search
spaces, such as evolutionary algorithms, will be regarded here, for across various engineering
domains they have shown their potential to discover new, often unexpected design solutions. A
method that can take into account structural as well as continuous variables will be proposed.
Moreover, it is discussed how to handle constraints on discrete and continuous variables. Both,
repair and penalty methods are used and it is investigated how often constraints are violated
in stochastic search. The results on building spatial designs of small and moderate size are
promising and provide interesting indications on how to plan future research.

The paper is structured as follows: In Section 2 the problem of building design is introduced
as well as a review of related work. The basic outline of the optimisation algorithm is provided
in Section 3. In Section 4 the search space, objective functions and constraints are discussed in
more detail. Then in Section 5 the coupling of optimisation and constraint handling is discussed
and the setup of experiments used for validating the approach. An in-depth discussion of results
is presented in Section 6. In Section 7 a summary of the main results is provided and directions
for future work are indicated.

2 BUILDING DESIGN

Building design is traditionally performed by architects and engineers who create solutions
for discipline specific design problems. These solutions are nowadays usually assessed by and
modified in accordance with design analysis tools. Such tools are for example finite element
methods (FEM), to simulate structural performance or computational fluid dynamics (CFD) to
simulate simulate heat, air, and moisture problems. The division created by the different dis-
ciplines within the field also calls for tools that allow engineers within different disciplines to
cooperate. Examples are computer aided design (CAD) that is used to create and share designs.
However, currently, building information modelling (BIM) is on the rise. BIM is a method that
uses data management in order to dynamically share information with other disciplines. This
allows engineers to – among other things – take other disciplines into account in the early de-
sign phase. The early design phase is important for optimal building designs, because decisions
in the conceptual design stage often affect performances across all disciplines. A single disci-
plinary design may therefore lead to a sub-optimal multi-disciplinary design. Optimisation in
the built environment is mostly performed by parametrising building components, e.g. instal-
lation type, construction type, material type, dimensions or shapes. Software tools for building
optimisation purposes have been developed: Palonen et al. [1] give an overview and present
their own tool. In the tool of Palonen, design variables of a building design can be selected
for optimisation, an optimisation strategy can be selected thereafter. Although these tools can
improve and alter a designs appearance greatly, they cannot lead to new designs (e.g. a new win-
dow cannot appear). Very recently, advances in early design optimisation are made: Hofmeyer
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& Davila Delgado [2] for example use a design process inspired optimisation approach to op-
timise a building spatial design for the structural performance of its related structural design.
Attia et al. [3] present software that gives information about building physics performances
during early design stages. Hopfe et al. [4] use statistical sensitivity analysis to predict the
impact of design variables on the optimality of a building design. The analysis by Hopfe et
al. is interesting for early design optimisation as the impact of each design variable in distinct
design stages can be investigated.

Here it is tried to perform building optimisation for early stage building spatial design us-
ing a new super-structure design space representation. A building spatial design is here merely
a layout of building spaces that can be rearranged and resized for optimal performance. Op-
timisation methods are investigated for two different objective functions on the design space:
Structural performance, measured by minimal compliance, and building physics, measured by
minimal outside surface area, are selected for the optimisation objectives. These disciplines are
selected because they are known to be dependent on the building spatial design. It is intended
to use a RC-network to analyse building heat-balance in the future, but for the sake of develop-
ing the optimisation strategy presented here only the minimal surface area is taken as objective
function. Details on the setup of the analysis are deferred to Section 5.

3 OPTIMISATION

Evolutionary algorithms subsume different algorithms that mimic natural evolution, in order
to find improved or optimised technological designs [5]. Population-based evolutionary algo-
rithms generally work according to a basic loop structure – the so-called generational loop. It
starts after an initialisation phase where an initial population of individuals (solution candidates)
is generated and evaluated. In the evolutionary loop first a ranking among individuals accord-
ing to their fitness (evaluation results) is established. The following step is to select the parents
to generate an offspring population. In this step the ranking of the population might be taken
into account, although in Evolution Strategies – an important EA variant – parent individuals
are chosen randomly. From the selected parent individuals λ offspring individuals are created.
Recombination is applied to allow parts of the genome from multiple parents to together from
a new genome. In order to introduce new, possibly not previously considered, information into
the genome, random perturbations are applied through mutation of the newly produced genome.
When applicable, this is followed by constraint evaluation, where invalid individuals may ei-
ther be repaired, penalised or discarded. Finally, the offspring population is evaluated on the
objective function and a new parent population is produced.

The specific evolutionary algorithm type chosen in this paper is the (µ+ λ)-Evolution Strat-
egy. Evolution Strategies (ESs) were developed by Ingo Rechenberg and Hans-Paul Schwefel at
the TU Berlin in the 60s and are especially well suited for solving engineering design problems
[6]. They are interesting for this work, as they can deal with discrete as well as with continuous
design variables, as outlined in Li et al. [7]. In Figure 1 the main loop of a (µ + λ)-ES is
summarised. Basically, the population (multiset) of individuals is used as a template to gen-
erate the offspring population M of size λ and from the combination of parents and offspring
the best individuals are selected as the parents of the next round. The initialisation, mutation
and recombination operators are chosen in a domain specific way, as will be discussed in more
detail in Section 5. For a more detailed discussion on evolution strategies and their properties
the reader is referred to [5] and [8].
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1. Initialise Population P0 ∈ S
2. Evaluate P0

3. t→ 0

4. While (Termination criterion is not satisfied)

5. t→ t+ 1

6. Ct = Randomly select λ pairs of individuals from Pt−1

7. Rt = {recombine(c, c′)|(c, c′) ∈ Ct}
8. Mt = {mutate(r)| r ∈ Rt}
9. Evaluate Mt

10. Pt = Select µ best individuals from Mt ∪ Pt−1

11. End While

12. Return best individual in Pt

Figure 1: (µ+ λ)-Evolution Strategy.

4 PROBLEM

One important task before optimisation can be used is to formulate a search space. In this
work, it is also intended to use parameter optimisation to optimise the building design. This
makes it necessary to encode the existence or non-existence of spaces by discrete variables.
Moreover the connectivity of spaces – the topology of the building spatial design – is encoded
by discrete variables. In contrast, the sizing of the spaces is encoded by continuous variables.

In the following, the supercube representation of building spatial designs will be used. It
can encode a large search space of building spatial designs by a fixed size vector of discrete
and continuous variables. This makes it easy to apply mixed-integer optimisation algorithms
directly for optimisation, as will be exemplified by using a mixed-integer evolution strategy
later in this work.

The supercube representation has recently been introduced in [9]. It is here assumed a
building spatial design consists of maximally Nspaces spaces that can be seen as mapped to
a Nw×Nd×Nh 3D rectangular (cuboid) grid, consisting of Nw×Nd×Nh cells. Here Nw, Nd

and Nh are the number of subdivisions in width, depth and respectively height. An example
of a supercube grid is shown in Figure 2. The size of the cells is determined by the dimen-
sioning variables wi, dj and hk for the width, depth and respectively height of the cells. Here,
i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd} and k ∈ {1, . . . , Nk}. The building spatial design is rep-
resented by binary variables b`i,j,k where i, j, k are again the indices to the width, depth and
respectively height and ` refers to the different spaces. If b`i,j,k = 1 this means that the cell with
indices i, j, k is part of space `, otherwise this is not the case. Not all configurations of cells
make sense from a building spatial design perspective. Constraints will therefore be formulated
to restrict the design space to reasonable solutions.

In summary the following variables will be subject to optimisation:

Discrete variables: (all binary)

b`i,j,k, i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd}, k ∈ {1, . . . , Nh}, and ` ∈ {1, . . . , Nspaces}
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Figure 2: Grid used in the supercube representation.

Continuous variables:

wi, i ∈ {1, . . . , Nw}, dj, j ∈ {1, . . . , Nd}, and hk, k ∈ {1, . . . , Nh}

4.1 Constraints on the discrete variables

In the following four types of topology constraints are introduced, see also [9]. To avoid
overlap of spaces every cell can belong to at most one space. This will be enforced by the
following constraint in Equation 1.

∀i,j,k
Nspaces∑
`=1

b`i,j,k ≤ 1 (1)

Spaces should have the form of a cuboid (3D rectangle). To enforce this constraint one can
first extend the supercube grid by adding a layer of cells with binary variables equal to zero
around it (Equation 2).

∀` : ∀i,j,k ∈ {0, . . . , Nw + 1} × {0, . . . , Nd + 1} × {0, . . . , Nh + 1} :
i = 0 ∨ j = 0 ∨ k = 0 ∨ i = Nw + 1 ∨ j = Nd + 1 ∨ k = Nh + 1⇒ b`i,j,k = 0

(2)

Moreover a i, j beam is defined as a set of cells that share the same i, j index. Accordingly
j, k and i, k beams are defined. For all i, j beams and all spaces ` transitions from zero to
one (Equation 3) should always occur at the same position and transitions from one to zero
(Equation 4) for space ` should also always occur at the same position. The same holds for j, k
and i, k beams (not in equations here).

∀` : ∀i1,j1,i2,j2 :

((
Nh∑
k=1

k
(
1− b`i1,j1,k−1

)
b`i1,j1,k

)
−

(
Nh∑
k=1

k
(
1− b`i2,j2,k−1

)
b`i2,j2,k

))
(

Nh∑
k=1

b`i1,j1,k

)(
Nh∑
k=1

b`i2,j2,k

)
= 0

(3)
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∀` : ∀i1,j1,i2,j2 :

((
Nh∑
k=1

kb`i1,j1,k
(
1− b`i1,j1,k+1

))
−

(
Nh∑
k=1

kb`i2,j2,k
(
1− b`i2,j2,k+1

)))
(

Nh∑
k=1

b`i1,j1,k

)(
Nh∑
k=1

b`i2,j2,k

)
= 0

(4)

Moreover, to ensure connectedness (if the previous two equations also hold) of the cells
of a space ` all beams (in all directions) should have at most one transition from zero to one
(Equation 5).

∀` :

∀i,j :
Nh∑
k=0

(
1− b`i,j,k

)
b`i,j,k+1 ≤ 1 ∀i,k :

Nd∑
j=0

(
1− b`i,j,k

)
b`i,j+1,k ≤ 1

∀j,k :
Nw∑
i=0

(
1− b`i,j,k

)
b`i+1,j,k ≤ 1

(5)

Building spatial designs normally stand on the ground. This is difficult to check by a simple
equation if vertical gaps are allowed in the spatial design. Therefore it is suggested to enforce
a no vertical gaps constraint as well. As a result of this constraint it is not possible to describe
structures with cantilevers, overhangs or archways. The no vertical gaps constraint could be
abandoned if one is willing to use more complex procedures to check constraints. These con-
straints are simultaneously enforced by disallowing transitions from zero to one for i, j beams.
Let bi,j,k be the outcome of a logical OR of all ` bits belonging to cell i, j, k. In equations:
∀i,j,k : bi,j,k = sgn(

∑Nspaces

`=1 b`i,j,k), where the sgn() may be omitted if the no-overlap constraint
(Equation 1) is satisfied. If Equation 6 holds, the building spatial design has no vertical gaps
and stands on the ground.

∀i,j :

(
Nh−1∑
k=1

(1− bi,j,k) bi,j,k+1

)
= 0 (6)

The number of described spaces is kept constant. This is achieved by ensuring every space
is described by at least one cell (Equation 7).

∀` :
Nw∑
i=1

Nd∑
j=1

Nh∑
k=1

b`i,j,k ≥ 1 (7)

4.2 Constraints on the continuous variables

In the design of buildings the total volume V0 of the building is could be provided as a con-
straint. To exclude inactive cells (not part of any building space) from the volume computation
here bi,j,k is again taken to be the result of a logical OR over all ` bits of a cell i, j, k. This yields
the equality constraint in Equation 8 below:

Nw∑
i=1

Nd∑
j=1

Nh∑
k=1

bi,j,kwidjhk = V0 (8)
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In addition, all continuous variables should be positive or taken from a range of positive
values.

4.3 Objective function

Optimisation is performed with respect to two objective functions from two different disci-
plines: Minimum compliance, which relates to structural design performance, and total outer
surface area, which relates to energy performance.

The structural design performance is assessed by first providing the building spatial design
with a building structural design. This is carried out by applying a so-called structural grammar
on each building space. The grammar selected here adds four walls (t = 150mm), with a slab on
top (t = 150mm), all made of concrete (elasticity modulus: E = 30000N/mm2 and Poisson’s
ratio: v = 0.3). The building spatial design is then loaded with a live load on each floor surface
(1.8kN/m2) and wind loads on each outside surface (1.0kN/m2 for pressure, 0.5kN/m2 for
suction and 0.4kN/m2 for shear) from eight general directions (N, N/W, W, etc.). After the
transfer of the loads to the building structural design and meshing of the structure, finite element
analyses are carried out to find the total compliance for all loads together. Detailed information
can be found in the paper by Hofmeyer & Davila Delgado [2]. In summary the first optimisation
task is to minimise the total compliance SC subject to the given constraints.

The total surface area objective can be computed for the supercube representation as fol-
lows. Note that for this computation it is required that the building spatial design contains no
cantilevers or archways, this is ensured by the no vertical gaps constraint previously described
with Equation 6. Additionally the computation requires a layer cells with their binary variables
equal to zero around the supercube (Equation 2).

Every ray through the supercube in width and depth measures the number of changes from
zero to one and then multiplies this number of changes by the area of the fixed indices and
then by two to take into account both the entry and exit points. In case of the height direction
the multiplication by two is omitted, because for the height direction the connection with the
ground layer is not counted as surface area. Since there are no vertical gaps, the height direction
is essentially the sum of areas of rays where space exists. The total sum SA := Sh + Sd + Sw

of Equations 9, 10 and 11 below is then the total surface area.

Sh =
Nw∑
i=1

Nd∑
j=1

((
Nh+1∑
k=1

(1− bi,j,k−1) bi,j,k

)
widj

)
(9)

Sd =
Nw∑
i=1

Nh∑
k=1

(
2

(
Nd+1∑
j=1

(1− bi,j−1,k) bi,j,k

)
wihk

)
(10)

Sw =

Nd∑
j=1

Nh∑
k=1

(
2

(
Nw+1∑
i=1

(1− bi−1,j,k) bi,j,k

)
djhk

)
(11)

In summary the second optimisation task is to minimise the surface area SA subject to the
given constraints.

5 OPTIMISATION METHOD SETUP

Next, a description follows of how the earlier introduced (µ + λ)-ES is customised for the
optimisation based on the supercube representation, including the handling of constraints.



Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer and Michael T. M. Emmerich
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Figure 3: Optimisation outline.

The optimisation procedure is outlined in Figure 3. For convenience three definitions are
introduced, the number of cells: Ncells := Nw×Nd×Nh, the number of continuous parameters:
Ncont := Nw + Nd + Nh, and the total number of dimensions: Ndims := Ncont + Ncells ×
Nspaces. The process starts by initialising the parent population of size µ = 20. Here continuous
parameters (x1, . . . , xNcont) are initialised to a uniformly random value in [lb = 1.5, . . . , ub =
9.9], and the binary parameters (xNcont+1, . . . , xNdims

) to one with probability 1/Ncells or zero
otherwise. Step sizes of the continuous parameters are initialised to 0.1. Following this the
volume of all new individuals is repaired to be within 1% of the desired volume 23 × Ncells

(a detailed description follows after this outline). In order to check constraints the continuous
parameters are then converted to millimetres (multiply by 2000). In case any constraints are
violated either a single penalty value of pen = 999, 999, 999 is output or a penalty value equal
to pen + CV − 1 based on the number of constraint violations CV ∈ 1, . . . , 5 is output as
objective value. Five constraints are considered for the value of CV : All spaces exist, no-
overlap, cuboid shape, connected cuboid and no vertical gaps. When no constraints are violated
the objective value is computed and output, either surface area in square metres or compliance
in Newton metres. For the initialisation round λ = 100 offspring are produced immediately, all
later iterations first make a selection of the µ best (lowest objective value) individuals from the
µ+λ individuals (parents+offspring). For every to be produced offspring individual two parents
are selected (possibly the same twice) uniformly at random. Using these two parents, crossover
is applied to produce a new individual, which is then mutated, and finally repaired if it exceeds
the bounds. This is done by Modified Interval Bounds Treatment, where for parameters the
previously defined lb and ub parameters are used and for the step sizes bounds lbs = 0.01 and
ubs = ub×0.1 are used. Intermediate crossover, taking the mean value of the parents, is applied
to the continuous parameters as well as their corresponding step sizes. Gaussian mutation with
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individual step sizes is applied to the continuous parameters. Their step sizes are mutated by
the local learning rate τ1 = 1/

√
2
√
Ndims and global learning rate τ2 = 1/

√
2×Ndims as in

Li et al. [7]. Implementation wise a global value g1 is drawn from a Gaussian distribution
g1 = G(0, 1) for every individual. For every parameter separately a second value g2 = G(0, 1)
and third value g3 = G(0, 1) are drawn. The step size s of a parameter is then mutated as:
s′ = s × exp(g1 × τ2 + g2 × τ1). The newly mutated step size is then used to mutate its
corresponding parameter x as: x′ = x+ g3× s′. Binary parameters apply crossover by copying
the value from one of the parents, chosen uniformly at random for each bit. Binary parameters
are mutated by flipping each bit with a probability of 1/(Ncells × Nspaces). Following this the
volume of the new offspring individuals is repaired and the loop repeats until the desired number
of evaluations is reached. Note that here evaluations are counted based on the number of valid
(non-constraint violating) solutions.

A detailed description of volume repair follows. When a newly created individual does not
satisfy the volume constraint in Equation 8 its volume is repaired, which is done by scaling
the continuous parameters. The desired total volume V0 is defined for each experiment. The
current total volume Vc is simply the outcome of the left-hand side of Equation 8. These two
values allow for the computation of a factor α = V0/Vc. The desired volume is then reached by
multiplying the continuous parameters by the cubic root of α as shown in Equation 12. Note
that this should only be done for active cells in the supercube (cells occupied by at least one
building space) since as defined before inactive cells do not contribute to the volume. As a result
of the creation process (recombination, mutation) of new individuals and the described volume
repair, continuous parameters of individuals may end up exceeding their lower bound lb or upper
bound ub. To correct for this, parameters exceeding the lower bound are set to the lower bound,
parameters exceeding the upper bound are multiplied by 0.95 until they are within the bound.
Clearly the corrections for the bounds affect the volume. Therefore the volume repair and bound
corrections are iteratively solved up to 26 times until both requirements are satisfied. When
this number of corrections is insufficient for any of the individuals the optimisation process is
stopped and considered as unsuccessful. This did not occur in the later presented experiments,
the likelihood of this occurring depends on the chosen bounds and the desired volume.

∀i : wi = 3
√
αwi ∀j : dj = 3

√
αdj ∀k : hk = 3

√
αhk (12)

Based on the described optimisation outline a number of experiments have been carried out.
Namely, individual optimisation of both the surface area and the compliance using a single
penalty value is used to test how well the proposed supercube description works in practice.
Moreover, this will set a baseline for the objective value of both functions. In addition a com-
parison is made to individual optimisation of the same objectives when using a penalty based
on the number of constraint violations. This comparison aims to provide some first insights into
constraint handling for this heavily constrained problem.

All experiments are conducted with an evaluation budget of 1000, for six different configura-
tions. A supercube of size two (2× 2× 2 cells) with one, three and five spaces, and a supercube
of size three (3× 3× 3 cells), also with one, three and five spaces. After generating one million
candidate solutions the optimisation is stopped, even if 1000 valid candidates are not yet found.

6 RESULTS

First experiments with a simple, single penalty, constraint handling technique are reported
as shown in Figures 4 and 5. Here infeasible solutions are penalised by a constant penalty that
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is higher than all objective function values of feasible solutions. For each plot mean values for
different numbers of spaces are shown. Different problem configurations are denoted by four
numbers. For instance ’1234’ would refer to a configuration with a width of one, depth of two
and height of three cells, and describing four spaces. Five runs of the optimisation process are
performed for every configuration.
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Figure 4: Mean convergence of the compliance for all completed runs (maximum of five) of single penalty 222x
and 333x configurations, for one, three and five spaces. 2225 and 3333 completed 3 of 5 runs and 3335 completed 0
of 5 runs. All incomplete runs did not find any valid spatial designs. All not specifically mentioned configurations
completed all five runs.
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Figure 5: Mean convergence of the surface area for completed runs (maximum of five) of single penalty 222x
and 333x configurations, for one, three and five spaces. 2225 completed 2 of 5 runs, 3333 completed 3 of 5 runs
and 3335 completed 0 of 5 runs. All incomplete runs did not find any valid spatial designs. All not specifically
mentioned configurations completed all five runs.

The results in Figure 4 show convergence plots for the compliance objective. After a rapid
decrease in the function value during the first few hundred evaluations the optimisation process
tends to stagnate. Configurations 2225, 3333 and 3335 did not find any valid solutions in all
of their runs. Namely configurations 2225 and 3333 both completed three of the five runs and
configuration 3335 completed none of the five runs. Mean convergence values in the plots are
computed over the completed runs, that is, runs that found 1000 feasible solutions. For surface
area similar results were found as shown in Figure 5. Here too, some configurations did not
complete all their runs, respectively configurations 2225, 3333 and 3335 completed two, three
and zero runs.
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For the ease of discussion the constraints are summarised here with a reference to the relevant
equations. Existence, all spaces exist, i.e. they are described by at least one cell (Equation 7).
No-overlap, each cell belongs to no more than one space (Equation 1). Cuboid shape, the
cells describing a space together form a cuboid shape, possibly with voids (Equations 3 and
4). Connected cuboid, given the cuboid shape constraint holds, all cells forming a space are
connected and form a cuboid without voids (Equation 5). No vertical gaps, all cells are either
on the ground level, or have an active cell on the level below them (Equation 6). Note that for
some problem configurations certain constraints are always satisfied, these are indicated as not
applicable (N/A).

Table 1 shows the ratios of constraint violations for every configuration and constraint type
for the minimal compliance objective with a single penalty value. For small supercube sizes the
existence constraint poses no problem. The no-overlap constraint depends on the ratio between
the number of spaces and the number of cells. The probability of constraint violation for the
3333 and 3335 configurations is extremely high (0.999218016 and 0.999294014), making it
impractical to search. The remaining three constraints show a similar pattern to the no-overlap
constraint. The constraint violations of the surface area in Table 2 show a largely similar be-
haviour, with a large portion of the constraints occurring with high probabilities. Constraint
violation appears to be a major problem for this approach.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.072030329 N/A 0.430918281 N/A 0.350463353
2223 0.148770246 0.373125375 0.528494301 N/A 0.393521296
2225 0.197997775 0.610956619 0.565072303 N/A 0.482480534
3331 0.014877790 N/A 0.590860786 0.160821821 0.501239816
3333 0.000360993 0.999218016 0.999928001 0.999147017 0.999986000
3335 0.816557669 0.999294014 0.999885002 0.999008020 0.999954001

Table 1: Mean constraint violation probability over five
runs for minimal compliance optimisation with a single
penalty value for various problem configurations.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.054300608 N/A 0.477410947 N/A 0.288010426
2223 0.176321781 0.433341766 0.589931697 N/A 0.348343031
2225 0.021001580 0.999803004 0.999840003 N/A 0.998622028
3331 0.040989160 N/A 0.525406504 0.168021680 0.483739837
3333 0.080888636 0.195670749 0.656508117 0.158074623 0.558245514
3335 0.816465671 0.999535009 0.999898002 0.999337013 0.999976001

Table 2: Mean constraint violation probability over five
runs for surface area optimisation with a single penalty
value for various problem configurations.

To remedy this problem a graduated penalty function was created. It penalises based on the
number of constraints that are violated. This allows evolutionary search to gradually correct
bits and find feasible solutions faster. Clearly Figures 6 and 7 show the success of this strategy
where all runs converge and it is now possible to deal with bigger grid sizes (e.g. 3335).
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Figure 6: Mean convergence of the minimal compliance optimisation with constraint penalties based on the number
of violations for five runs of 222x and 333x configurations, for one, three and five spaces.

In terms of constraint violations it is observed that penalising based on the number of violated
constraints vastly improves the chance of finding valid solutions, as shown in Tables 3 and 4.
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Figure 7: Mean convergence of the surface area optimisation with constraint penalties based on the number of
violations for five runs of 222x and 333x configurations, for one, three and five spaces.

Where with a single penalty a significant number of constraints were violated with probabilities
above 80% this is now reduced to a single case. Only the existence constraint remains a major
problem, and even this is only true for the largest configuration (3335). Even so, many other
constraint violations still occur around 50% of the time, and clearly these would benefit from
further improvement as well.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.066305819 N/A 0.423545332 N/A 0.328371673
2223 0.156955204 0.322667565 0.467497474 N/A 0.313910408
2225 0.305234899 0.484563758 0.455570470 N/A 0.334228188
3331 0.013302295 N/A 0.605919521 0.119388094 0.518789491
3333 0.143656716 0.112873134 0.559701493 0.078358209 0.456778607
3335 0.840781999 0.154225102 0.462875022 0.082638026 0.422732114

Table 3: Mean constraint violation probability with
penalties based on the number of violations over five
runs for minimal compliance optimisation for various
problem configurations.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.063636365 N/A 0.501581028 N/A 0.269960474
2223 0.144760533 0.320849838 0.453366943 N/A 0.142599928
2225 0.197621226 0.532174443 0.471790170 N/A 0.365965233
3331 0.063481457 N/A 0.521550284 0.105913799 0.467758102
3333 0.142694064 0.146689498 0.582191781 0.099029680 0.469463470
3335 0.859725404 0.193019717 0.495911166 0.101861297 0.420656555

Table 4: Mean constraint violation probability with
penalties based on the number of violations over five
runs for surface area optimisation for various problem
configurations.

The example results of some building spatial designs are given here, it was observed that dif-
ferent configurations resulted in different spatial designs. There is a clear distinction between
the results from minimal compliance optimisation (Figure 8) and those of surface area optimi-
sation (Figure 9). Surface area optimisation leads to compact cuboid, or near cuboid, shapes,
as might be expected. Minimal compliance optimisation on the other hand produces a variety
of shapes. The similarity between both 2225 configurations is striking, but probably the result
of the limited variety of space arrangements within an order two supercupe. On the other hand,
little use is made of the extra space in the 333x configurations. For the 3333 configurations this
may be explained by the availability of only three spaces; there is a limited number of valid
building spatial designs that can make use of the larger number of cells with only three spaces.
Note that while it is possible to produce spaces consisting of a large number of cells, reaching
such a situation becomes increasingly difficult with the number of cells while also satisfying the
constraints. For example the largest space in the 3335 configuration for surface area optimisa-
tion (Figure 9d) consists of just two cells. This is likely to play a role in the limited use of space
for both the 3333 and 3335 configurations. These frequent issues with constraints complicate
exploring all feasible solutions in the search space, in particular transitions between different
feasible parts of the search space are challenging when many moves end up in infeasible parts
of the search space.



Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer and Michael T. M. Emmerich

(a) 2223 (b) 2225 (c) 3333 (d) 3335

Figure 8: Examples of output spatial designs of compliance optimisation.

(a) 2223 (b) 2225 (c) 3333
(d) 3335

Figure 9: Examples of output spatial designs of surface area optimisation.

7 DISCUSSION

A newly described optimisation outline for building spatial designs in early stages of building
design has been shown to make effective use of a mixed-integer super-structure representation.
The optimisation process was shown to converge for both small and medium sized building
spatial designs for two individual objectives, compliance and surface area. Moreover, different
constraint handling techniques were applied to significantly improve the ability to traverse a
search space in search of valid designs. Both repair procedures and graded penalties were used.
Altogether these results form a promising first step in multi-disciplinary design optimisation.

A problem that was encountered is that different runs found different topologies. A possible
explanation is that transitions from one feasible subspace to another are very unlikely. In future
work this should be addressed by global optimisation strategies such as niching [10]. Another
issue is that even the largest problem configurations considered here are not very large com-
pared to most practical building spatial designs. Given a significant portion of the constraints
are violated with frequencies in the 40 to 50% range and in the worst cases over 80%, even
when using the multi-penalty approach, it is clear that for larger designs more effective con-
straint handling methods have to be introduced.
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[3] Shady Attia, Elisabeth Gratia, André De Herde, and Jan L.M. Hensen. Simulation-based
decision support tool for early stages of zero-energy building design. Energy and Build-
ings, 49:2–15, 2012.

[4] Christina J. Hopfe, Michael T.M. Emmerich, Robert Marijt, and Jan L.M. Hensen. Robust
multi-criteria design optimisation in building design. Proceedings of Building Simulation
and Optimization, Loughborough, UK, pages 118–125, 2012.
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