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Abstract. The analysis of masonry structures is of particutderest in the civil engineering
and architecture community due to the large amaifrhistorical masonry constructions in
Europe and in Italy in particular. Masonry is a bebgeneous material obtained by composi-
tion of blocks connected by dry or mortar jointbeTuse of refined models for investigating
the in and out of plane nonlinear behaviour of mmagas an active field of research. Consid-
ering historical masonry, the mechanical propertegoints are usually lower than those of
blocks, allowing to assume that damage occurs rfrecgiently along joints. For this reason,
discrete element models (DEMs) may be frequenthptad for representing masonry behav-
iour, assuming blocks as rigid bodies and jointsraerfaces, with a small number of degrees
of freedom and parameters involved in the analydswell known, masonry walls may be
considered as the most important category of loaarng elements in masonry structures
and they are subject to vertical and horizontali@e$ generated by gravitational loads and
seismic actions, respectively. Horizontal loads raetyin plane or out of plane, causing two
different collapse mechanisms for a masonry walthis work a simple and effective discrete
element model, already developed in linear fieldificand out of plane analysis and already
extended in nonlinear field but only for in plangadysis, is here extended to the three dimen-
sional nonlinear analysis of masonry walls. A M&wulomb yield criterion is adopted for
modelling interface behaviour. A numerical expentagion is carried on in order to deter-
mine the limit load multiplier, together with thellapse behaviour, of several masonry walls.
Moreover, existing results are taken in considenmain order to calibrate the proposed model
and to evaluate its effectiveness.
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1 INTRODUCTION

Masonry is a heterogeneous material composed lbyahair artificial blocks connected by
dry or mortar joints. Masonry was the main buildmgterial for many centuries; earthquake
actions are one of the main causes of collapsdalendssessment of seismic performance of
masonry structures remains a challenging taskarstiuctural analysis field of research.

The strength of masonry structures is affected dntetrical configuration and constructive
details. As well known, such details have effeatstlte two main different seismic induced
damages and collapse modes of masonry walls: mepéand out-of-plane collapse mecha-
nisms. The former are responsible for extendedrstefarmations and cracks, while the latter
may cause the tilting of entire wall portions, le@peventually to the partial or total collapse
of the construction. These collapse mechanisms wleserved in past earthquakes and ade-
guate descriptions by means of numerical and analyhodels were done and are still being
developed [1,2].

Several types of numerical models may be adoptedttmlying masonry behaviour such as
heterogeneous or homogenized Finite Element Md#&8/s) or Discrete Element Models
(DEMSs); moreover, several analysis types may b&peed such as limit analysis or incre-
mental analysis. For instance, an overview of tleghods for modelling masonry structures
may be found in the work of Smoljané\et al. [3] and a deep literature review of ouplaine
behaviour and models for masonry has been receatlg by Ferreira et al. [4].

A DE Model, based on the assumptions of rigid bdoakd joints modelled as interfaces, may
be suitable for investigating masonry behaviour tughe small number of degrees of free-
dom (DOFs) needed for performing a numerical amalgé block assemblages. These as-
sumptions may be suitable for historical masomywhich block stiffness is larger than joint
stiffness, allowing to assume blocks as rigid bsdmoreover joint thickness is negligible if
compared with block size, especially in case of jdmgts, allowing to model joints as inter-
faces. Discrete models were adopted in the pastdny authors for studying masonry out of
plane behaviour in linear and nonlinear fields (§-1n particular, Cecchi and Sab [7] defined
a simple and effective DEM for studying the thre@ehsional behaviour of masonry panels
with a small computational effort due to the snmaimber of degrees of freedom involved.

In this contribution, the original three-dimensibdécrete element model (3D DEM) intro-
duced by Cecchi and Sab [7] in the linear elaséldf is extended to the field of collapse
analysis by assuming a Mohr-Coulomb vyield critefonrestraining interface actions. With
this aim, a nonlinear -elastic perfectly plastiaterface behaviour is considered by assuming
action restraints as elastic limits. The theorétiaark of Orduiia and Lourenco [8] is taken as
reference for defining restraint conditions relatto interface shear force, torsion and their
combination. Moreover, a static solution approalaracterized by the determination of the
stiffness matrix of the masonry assemblage is adhollowing and extending the procedure
already adopted by authors for the nonlinear inergal analysis of masonry walls in plane
loaded [11] and for the in and out of plane modullgsis of masonry walls [12,13]. Several
numerical experiments are carried on in order talate the proposed nonlinear DEM with
respect to existing numerical and laboratory resuior first, numeric out of plane tests per-
formed by Ordufia and Lourenco [9] are reproduchkdn,t the experimental campaign on
scaled masonry-like specimens performed by Restvéter et al. [14] is taken in considera-
tion and several cases are reproduced with theopegpnonlinear DEM. In general, the pro-
posed numerical solution method turns out to becéffe for the determination of limit loads
and out of plane collapse mechanisms of the maseallg considered.
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2 THREE DIMENSIONAL DISCRETE MODEL

A regular masonry with standard running bond pecigattern is considered; the generic
block B ; is in contact with six neighbours by means ofisterfaces or jointﬁwz , With Ky,

k. = £ 1 for horizontal interfaces atel = + 2,k, = 0, for vertical interfaces (Figure 1). Block
dimensions area (height),b (width) ands (thickness).
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Figure 1. Discrete model, running bond Represemdiementary Volume (REV).

Assuming rigid block hypothesis, the displacemdra generic block is represented by a rigid
body motion referred to the motion of its centre éme rotation with respect to its centre:

ul(y)=ul +Qi (y-y'). 1)
Wherey' is the position of block centre in the Euclidegrace:y"’ =i(b/2)e +jae,;
considering the three dimensional casé={u’ U’ &} is the translation vector d ,
and Q"' is the rotation skew tensor collecting block rimias with respect to coordinate axes:

0 —aé'j ajzj
Q=g 0 - @
_ajZ,J' (‘)1] 0

In and out of plane block translations and rotatiomay be collected in
g ={u’ d} &) &} &) &T . Following the procedure described in [7], theerattions
between two adjacent blocks; and B,, ;... through a generic interfacg_, are repre-

sented by interface tensiossthat are related to the relative displacement ratations be-
tween adjacent blocks by means of a constitutilagiom en =K d , neglecting for simplicity

apexk k.. Hereo is the stress tensar,is the normal vector to the generic interfa€es the
interface stiffness matrix ardlis the vector that collects interface relativegiations:

d1|<1,k2 — U1i+k1, j*ko _ ull + kze(wis’rklvhkz + 0}3,1 )/2’
dite =yt — I — K (bf 2)(ad e + ad) )/ 2, ©)
dgl,k2 — U:i;kl’ jtky _ Lg] + k:L( b/ 2)(C{)i2+k1,j+k2 + a)zj )/ 2- kzdwifkl’j”(z + C()lj )/ 2,

and relative rotations:
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K itk ik
5lk1 z_wll+11+z_a)11’

Kk i+ky, j*Ky _ . .
52‘& 2 _a)z 1 1Kz ajz ' (4)
53k11k2 = a%i+k1, ke _ ajéj .

and that may be written ak*'e ={d** d** dj**3,%* 3,5 5,5 ¥ . It is worth noting that
in order to better highlight the relation betweelative displacements and global block trans-
lations and rotations, the above expressions may woigten in matrix form as
d“* =H"%*q %% whereq"* collects translations and rotations of two adjads#acks and

H*%* may be defined as interface ‘compatibility’ matfb5] that collects, following Equa-
tions (3)-(4), the relative distances between #@res of the blocks considered.
Assuming initially the hypothesis of elastic intaé behaviour, the interface stiffness matrix

K may be detailed for horizontal and vertical caket' =diag{K, K, K,K, K, K.} and

Kk =diag{K, K, K,K, K, K.}, collecting tangentialk), normal K,) and rotational ;)

stiffness of the interface. It is worth noting thatational stiffness assumes the same value of
normal stiffnessk,; = K), but it is defined by a different variable giverathn the following
description of interface nonlinear behaviour itlvaé necessary to distinguish between non-
linear behaviour of normal forces with respecthattof bending moments. Assuming mortar
joints with an isotropic and elastic behaviourgnfécial stiffness values are function of mor-
tar elastic modulug™ and Poisson ratid" [7].

The elastic energy of the interface is determingddfining the product of interface stresses
and interface relative displacements:

M, =5 J o'das=2 [ d'Kd ds=Zd KA Y =3 Kd, (5)
23<1‘k2 23<1~k2 2 2

where apeX,,k; for vectors and matrices is omitted for simplicidyis the generic (diagonal)
matrix of area and inertias of the interface, tmaty be detailed for horizontal and vertical
casesAn = diag{Sh S S Int (It Ins) Ina}, Av=diag{S S S, (Iv2t1vs) Iv2 lva}, with

S, =bs2 |,=bd/24, |, =bHs/96
S=as |,=as/12, |, =49d12.

}

(6)

Interface forces and moments may be obtained bgrdiitiating the expression of interface
elastic energy in Equation (5) with respect to elalcitk displacement component. Such un-

known forces f/*'e, )%, f % and momentsm', mt*, nf*** may be collected in

flok ={flle fok flolemiemse mitdT and it can be easily demonstrated that
flok =K kg ke
Extending Equation (5) to the entire masonry assagel(i.e. masonry panel), the total elastic

energyll is obtained and the subsequent equilibrium eqgudtio the assemblage subject to
generic in and out of plane actioR¥"is:

F =0M/dq =K ™Y, @

whereq collects block displacements and rotations ofehgre panel. Equation (7) may be
solved by adopting a molecular dynamics algoritifindr directly by explicitly defining the
stiffness matrix of the entire assembld¢®"® joining together the procedures already pro-
posed by authors [11-13] for the in and out of plaases, respectively, and used separately in
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the field of in and out of plane modal analysisr@sonry panels and in the field of nonlinear
analysis of masonry panels in plane loaded. Inqadatr, the determination of panel stiffness
matrix is based on the definition of a ‘compatiyilimatrix [15] HP®" obtained by assem-
bling matricesH'* over the panel and that relates relative displatesnof the entire panel

d”" with block displacements and rotatiom™™ = H "% . Then, panel stiffness matrix

may be calculated a& "™ =H P K P94 P whereK "™ is a diagonal matrix col-
lecting interface stiffness values of the entiragla

2.1 Yield criterion for interface

The nonlinear behaviour of interfaces is governgdabMohr-Coulomb vyield criterion,
characterized by a cohesiorand a friction ratiq: = tarp. For instance, dry interfaces cannot
support tension and have a negligible cohesionyeasemortar joints are characterized by a
tensile strengtls; and a cohesion value that may be determined byhsnehexperimental
tests (for instance EN 1052-3:2002). However, batkrface types are characterized by a
frictional behaviour and an unlimited compressitrersgth is assumed.

Considering a generic interface and assuming d éocadinate systenmy.ys, with planey:y,
coincident with interface mid-plane age orthogonal to it. Forces and moments exerted by
two adjacent blocks at the interface centre argufiel 2): normal forcef,e, = f e,, shear

forces fe, f,e,, bending momentsme,, me, and torsionmse,.

Figure 2: Generic interface with local coordinagstem and interface forces and moments.

2.1.1 Normal and flexural interface strength

Considering for first interface normal force anchéi®mg moments, the nonlinear behaviour
is governed by tensile strength and a simple elpdastic relation between actions and rela-
tive displacements is adopted. Normal force andlimgnmoments must satisfy the following
conditions:

f=f<f,
||T!L|S (ft_fn)lcll (8)
Im, |< (- §) L.

Wheref; represents the tensile strength of the interfdeéned as the product of joint tensile
strengtho; and area of the interfac8, (or &) andlq; with i = 1,2 is the characteristic length of
the interface with respect to interface plane dioes, namely the maximum eccentricity of
normal force with respect to block centre that rhaysupported by the interface. Each value
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is equal tol , =s/2,1,=b/4 for a horizontal interface and tg =a/2,l_,=s/2 for a ver-

tical one.

First and second conditions in Equation (8) havenb&ready adopted by authors for the in
plane case [11] and they turn out to be coincitietthose adopted by Trovalusci and Masiani
[16]. In particular, the first condition may be oefd as ‘detachment’ condition, whereas the
second and third ones may be defined as ‘rotationditions with respect tp andy, axis.

The relationship between interface normal force ratative normal displacement and the re-
lationships between interface bending moments aative rotations follow an elastic-
perfectly plastic behaviour. In particular, if theeerface is subject to excessive moment, only
its rotational stiffness is set equal to zero, wherif the interface is subject to detachment, all
interface stiffness values are set equal to zero:

f >f - K =K, =K, =0,

ImP>(f-f)l, - K =0 i=12 )

2.1.2 Shear and torsion interface strength

Differently than the in plane case, characterizgdnterface shear force acting together
with a normal force and a bending moment, in threghldimensional case shear stresses are
generated by two components of shear fér@ndf, and by a torsioms and such stresses act
together with normal stresses generated by noromeéfand bending moments. Limit condi-
tions for shear forces and torsion adopted heteviolhe expressions introduced by Ordufia
and Lourenco [8]. In particular, if torsion is nmtesent, uniform shear stresses are assumed
over the interface and the well-known Mohr-Couloyméld criterion is applied to the resul-
tant of interface shear forces as follows:

|f, |=/f2+ 2 < (f,-f )tang if m=0 (10)

The condition above may be defined as ‘sliding’ diban and the quantity( f, — f_ ) tang]

represents the shear strength of the interfage.Worth noting that in this case the cohesion
of the interface is represented by the shear stneéngabsence of a normal action, hence it can

be assumed that such strength is equat & = ftang] for a horizontal interface and to
[cS = ftang] for a vertical one.

If shear forces over the interface are equal to,zée torsion generates shear stresses depend-
ing on relative rotation and on the distance fronerface centre, that represents the twisting
centre. Torsion over the interface must be less tha torsion strength as follows:

Im <G (f-f)tanp if f=0 (11)

whereC; is the torsion constant defined in [8], that isdxhon an interface subdivision into
eight rectangular triangles. If shear forces angion act together over the interface, the
twisting centre moves away from interface centrd #re shear-torsion interaction may be
defined analytically by integrating shear stressesr the interface. The simplified shear-
torsion interaction curve defined by Ordufia andreogo [8] is adopted. An elastic-plastic
behaviour is assumed also in this case and ifaiestconditions for shear force and torsion
are not respected, the interface tangential sefReis set equal to zero, whereas normal and
flexural stiffness values are not modified.

In order to appreciate the correct adoption of slaa torsion nonlinear behaviour in the
proposed DEM, a simple specimen of two blocks cotateby an interface modelled with
DEM is tested by applying to the interface an iasieg torsion with several fixed values of
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shear force and by applying an increasing sheaefarnth several fixed values of torsion.
Friction ratiox = 0.7 is assumed and a normal fofice 240 N is applied over the interface.
Interface size are 0.2 m x 0.3 m. The followinguf&gg3 shows separately the torsion-relative
rotation incremental curves for varying shear foaoe the shear force-relative displacement
incremental curves for varying torsion. As expegctedsion strength decreases for increasing
the applied shear force and similarly shear sttengtcreases for increasing the applied tor-
sion. Both groups of incremental curves allow teéaobthe simplified shear-torsion domain
proposed by Orduiia and Lourencgo [8].
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Figure 3: Incremental analyses of a simple specisubject to increasing torsion with several valoifixed
shear force and subject to increasing shear foittessveral values of torsion.
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Figure 4: Torsion strength-bending moment intecarctiurves.
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Finally, if bending moments act over the interfaogether with shear force and torsion, the
effective area of the interface is reduced takig account eccentricity values = my/f, and

e = my/f,, then the torsion consta@t gets smaller, leading to a smaller torsion stiength
respect to the case without bending moments. Cerisglagain a simple specimen made of
two blocks connected by an interface and varyinty balues of bending moments over the
interface, Figure 4 shows the corresponding torstoength values and the curves obtained
numerically are in excellent agreement with thobwimed analytically by Ordufia and Lou-
renco [8].

2.2 Nonlinear DEM

As previously stated, restraint conditions for ifdee forces and moments allow to define
the elastic limits of force-relative displacementanoment-relative rotation constitutive laws,
that are assumed to be elastic-perfectly plashenT incremental analyses may be performed
by applying incremental load steps to the discnedelel and updating the stiffness matrix ac-
counting for local interface nonlinear behaviourr khstance, the stiffness matrix at a generic
load step, needed for the evaluation of the coarding increment of displacemerds;, and

internal forceskF™ , is based on interface damage at the previous ategollows:
o, = (K P, ) 'F “tand F™ =F" +K ™™ &y, . Then, internal forces are corrected ac-

counting for the yield criterion adopted and residorcesR, =F™ —-F** are determined as a
starting point of an iterative process of residumisimization.

In the following paragraphs, numerical tests andopmed considering masonry panels sub-
ject to self-weight and increasing lateral loadsafi out of plane). Such loads are proportional
to the weight P = yabs, wherey is block volumetric weight) and are identified the load
multiplier A; then, the vector collecting the total forces @aplat block centres may be de-
fined asF*™ =F, +\F_, whereFp represents dead loads, collecting block weRjlatndAF_

represents unknown horizontal live loads (in orafytlane).

3 IN PLANE NUMERICAL EXPERIMENTS

In order to appreciate the effectiveness of thg@@sed nonlinear DEM, several numerical
experiments of masonry panels in plane loaded byvsgght and increasing lateral loads are
performed. For instance, the numerical tests aaitymperformed by Baggio and Trovalusci
[17] and already studied by authors [11] are repced, obtaining the same results of previ-
ous in plane analyses (Figure 5).
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APEM = 0.49;ARFF I = 0,50 APFM = 0.36;07F" 1= 0.34

Figure 5: Failure mechanisms for masonry panelgsubo self weight and increasing in plane latéatls.
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4 OUT OF PLANE NUMERICAL EXPERIMENTS

lv=lt

Figure 6: Typical out of plane collapse mechanifmn& masonry wall [18].

In this paragraph, several numerical experimergscarried on in order to evaluate the ef-
fectiveness of the proposed nonlinear DEM in theereination of out of plane collapse
mechanisms and limit loads of masonry panels. itiqudar, the typical mechanisms de-
scribed by Rondelet [18] are going to be reprodungderically and several existing results,
both numerical and experimental, are taken aseefer. In particular, the first mechanism
type defined by Rondelet is the typical out of glaigid rotation of a free masonry wall with
respect to its base (Fig. 6a), whereas the secaatianism regards a masonry wall restrained
along a vertical edge by an orthogonal wall, legdmthe formation of a diagonal crack and
to a roto-translation of a triangular portion oé twall (Fig. 6b). This mechanism is character-
ized by a larger ultimate load with respect to pihevious case. Finally the third mechanism
regards a masonry wall restrained by two orthogoradlls at both vertical edges; in this case
a vertical crack along panel axis of symmetry fotogether with two diagonal cracks start-
ing from panel upper corners (Fig. 6¢), leadingwo triangular portions that rotate with re-

spect to diagonal cracks. In this last case, theate load is larger than those of the previous
mechanisms.

4.1 Case studies proposed by Ordufia and Lourencgo

a b
Figure 7: Case studies considered originally byuBiedand Lourenco [9].

Two simple examples of masonry panels out of plaaded are taken into account for
first, by assuming as reference the numerical st®rmed by Ordufia and Lourenco [9]. In
both cases masonry panels are made of blocks akgkfollowing a running bond pattern
and having dimensiors= 0.081 mp = 0.210 ms = 0.07 m and volumetric weight equal to
20 kN/nT. Contacts between blocks are dry, witk 0.7 and null cohesion. In the first exam-
ple, panel overall dimensions are: lengtl 0.630 m, heighH = 1.053 m and thickness=



D. Baraldi and A. Cecchi

0.07 m, obtained by assembling 3 blocks along pemgjth and 13 blocks along its height;
moreover block translations are fixed along paetldolumn (Figure 7a). In the second ex-
ample panel dimensions arfe:= 1.260 m,H = 1.053 m and = 0.07 m, obtained with 6
blocks along panel length and 13 blocks along éigtit. In this case, block translations are
fixed along external columns (Figure 7hb).

Figure 8a shows a collapse mechanism charactebyeal diagonal crack starting from the
right side of the panel after the 2nd row of blocRach mechanism is in quite good agree-
ment with the one showed in the original analysid the limit load obtained with the pro-
posed nonlinear DEM is included between FEM andt lanalysis performed by Ordufia and
Lourenco (Table 1). Figure 8b shows a collapse @@sm characterized by a symmetric
flexural deformation with large displacements alaegtical axis of symmetry. Similarly to
the previous case, collapse mechanism and limd (@able 1) are in quite good agreement
with reference solutions.

b

Figure 8: Failure mechanisms for the masonry pasteldlied by Ordufia and Lourenco [9] modelled with
DEM.

case 1 case 2
APEM 0.175 0.215
ARERFEM 0210 0.260
ARERIM 0127 0.193

Table 1: Limit loads obtained with DEM and referemesults of the masonry panels studied by Ordufla a
Lourenco [9].

4.2 Restrepo Vélez, Magenes and Griffith experiments

In this paragraph, several experimental tests padd by Restrepo Vélez et al. [14] are
taken as reference. Original tests were perfornmedcaled masonry-like specimens with dry
joints, subject to self-weight and increasing oluplane loads by means of an inclined plane
machine, in order to obtain out of plane failurechnisms. Block dimensions aae= 28.24
mm, b = 79.78 mm and = 39.68 mm and block volumetric weight is 26.8 &Rl/Dry joints
are characterized by friction ratio= 0.7 and null cohesion. All cases are charaadrizy 21
block courses along panel height and varying numhsrblocks along panel length (from 4
to 14, for instance). Panel restraints at one ti laderal edges were obtained with one or two
orthogonal walls (Figure 9a and b, respectivelgy; this reason, several mechanisms turned
out to involve also blocks in orthogonal walls.the present campaign, the effect of orthogo-
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nal walls is simply modelled by restraining bloc&rtslations and rotations along one or both
lateral columns (Figure 9d and e, respectivelyerithe present model will not be able to
represent complex collapse mechanisms involvingoganal walls, leading to small differ-
ences between proposed numerical results and engral tests. Moreover, an additional
specimen type considered a panel without orthogaa#ls simply supported at the base and
loaded by several wooden beams (Figure 9c).

relrols
oPr

Figure 9: Masonry specimen types considered ir¥perimental campaign by Restrepo Vélez et al (a4]
¢); corresponding specimens modelled with DEM iespnt analysis (d-f).

Figure 10 shows failure mechanisms of several garestrained along left column, varying
the number of blocks along panel length (for furtietails about block number see the first
row of Table 2). Mechanisms are characterized diagonal crack starting from lower-right
panel corner, directed towards the upper-left panater and a triangular/trapezoidal portion
of panel is subject to a roto-translation with exgtpgo such diagonal crack. These mechanism
types are in quite good agreement with experimeetts, moreover numerical results ob-
tained with the proposed nonlinear DEM are in qgted agreement with experimental re-
sults (Table 2), especially for specimens S11, &@ S13, thanks to the large number of
blocks of the models, whereas for specimen S15actexized by a small number of blocks
along panel length, limit load obtained with DEMgsite far from experimental result with
respect to other cases.

Figure 11 shows failure mechanisms of several garedtrained along both lateral vertical
edges. Such mechanisms are characterized by aalentack along the axis of symmetry of
the panel and diagonal cracks starting from latedgles and moving down to panel axis of
symmetry. Mechanisms are similar but not coincideith respect to those obtained experi-
mentally, due to the real restraint adopted for anag specimens; however limit loads ob-
tained numerically with nonlinear DEM are still quite good agreement with experimental
results.

Finally figure 12 shows the failure mechanism diraply supported panel loaded by eleven
wooden beams (16.46 N transmitted by each beam)sabgct to increasing out of plane
loads (see Figure 9c for the corresponding speciymmand Figure 9f for the corresponding
DEM representation). The mechanism is charactetiyea horizontal hinge in the upper por-
tion of the panel, along the joints between th8 aad 16' block courses and it is almost co-
incident with the real mechanism obtained durirgptatory tests; similarly, the collapse load
is close to the one evaluated experimentally.



D. Baraldi and A. Cecchi

Figure 10: Failure mechanisms for several masoangls restrained along left column considered by Re
strepo Vélez et al. [14] modelled with DEM.

S1-S2-S3 S5

Figure 11: Failure mechanisms for several masoang|s restrained along lateral columns consideyed b
Restrepo Vélez et al. [14] modelled with DEM.

S32

Figure 12: Failure mechanisms for the masonry paaeled by a set of wooden beams and simply suggbort
at its base considered by Restrepo Vélez et dl.nfibdlelled with DEM.

S11 S12 S13 S15 S6 S1-S2-S335  S32

n 12 8 6 4 13 11 8 14
APEM 0.100 0.125 0.165 0.250 0.160 0.225  0.350 0.305
AREF 0.097 0.129 0.181 0.199 0.208 0.208  0.349 0.293

Table 2: Limit loads obtained with DEM and referemesults of the masonry specimens considered by Re
strepo Vélez et al. [14].
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5 CONCLUSIONS
* In this contribution, the three-dimensional DEMrattuced by Cecchi and Sab [7] for

modelling regular masonry in the linear elastiddiibas been extended to the collapse
analysis field by adopting a Mohr-Coulomb yieldterion and following the work of
Ordufia and Lourenco [8] for defining the interastlmetween interface shear forces, tor-
sion and bending moments.

The proposed nonlinear DEM for three-dimensionallgsis turned out to be simple and
effective in the determination of limit loads anallapse mechanisms of masonry panels
having regular texture and dry joints, subjectdlh weight and out of plane loads.

Several numerical tests reproduced the laboratanypaign carried out by Restrepo Vé-
lez et al. [14], in this case the nonlinear DEM wwliated correctly limit loads of the
specimens taken into account. Moreover, consideraligpse mechanisms, the ones rel-
ative to panels restrained by a lateral orthogeradl have been reproduced correctly by
the DEM, whereas small differences have been fonmdllapse mechanisms relative to
panels restrained by orthogonal walls along paateldl edges.

Further developments of the model will regard teseasment of nonlinear analysis of
more complex masonry specimens, characterizedxaomple by blocks arranged irregu-
larly, openings, lintels and also by real orthodowmalls and roofs.
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