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Abstract. The analysis of masonry structures is of particular interest in the civil engineering 
and architecture community due to the large amount of historical masonry constructions in 
Europe and in Italy in particular. Masonry is a heterogeneous material obtained by composi-
tion of blocks connected by dry or mortar joints. The use of refined models for investigating 
the in and out of plane nonlinear behaviour of masonry is an active field of research. Consid-
ering historical masonry, the mechanical properties of joints are usually lower than those of 
blocks, allowing to assume that damage occurs more frequently along joints. For this reason, 
discrete element models (DEMs) may be frequently adopted for representing masonry behav-
iour, assuming blocks as rigid bodies and joints as interfaces, with a small number of degrees 
of freedom and parameters involved in the analysis. As well known, masonry walls may be 
considered as the most important category of load-bearing elements in masonry structures 
and they are subject to vertical and horizontal actions generated by gravitational loads and 
seismic actions, respectively. Horizontal loads may act in plane or out of plane, causing two 
different collapse mechanisms for a masonry wall. In this work a simple and effective discrete 
element model, already developed in linear field for in and out of plane analysis and already 
extended in nonlinear field but only for in plane analysis, is here extended to the three dimen-
sional nonlinear analysis of masonry walls. A Mohr-Coulomb yield criterion is adopted for 
modelling interface behaviour. A numerical experimentation is carried on in order to deter-
mine the limit load multiplier, together with the collapse behaviour, of several masonry walls. 
Moreover, existing results are taken in consideration in order to calibrate the proposed model 
and to evaluate its effectiveness. 
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1 INTRODUCTION 

Masonry is a heterogeneous material composed by natural or artificial blocks connected by 
dry or mortar joints. Masonry was the main building material for many centuries; earthquake 
actions are one of the main causes of collapse and the assessment of seismic performance of 
masonry structures remains a challenging task in the structural analysis field of research. 
The strength of masonry structures is affected by geometrical configuration and constructive 
details. As well known, such details have effects on the two main different seismic induced 
damages and collapse modes of masonry walls: in-plane and out-of-plane collapse mecha-
nisms. The former are responsible for extended shear deformations and cracks, while the latter 
may cause the tilting of entire wall portions, leading eventually to the partial or total collapse 
of the construction. These collapse mechanisms were observed in past earthquakes and ade-
quate descriptions by means of numerical and analytical models were done and are still being 
developed [1,2]. 
Several types of numerical models may be adopted for studying masonry behaviour such as 
heterogeneous or homogenized Finite Element Models (FEMs) or Discrete Element Models 
(DEMs); moreover, several analysis types may be performed such as limit analysis or incre-
mental analysis. For instance, an overview of the methods for modelling masonry structures 
may be found in the work of Smoljanović et al. [3] and a deep literature review of out of plane 
behaviour and models for masonry has been recently done by Ferreira et al. [4]. 
A DE Model, based on the assumptions of rigid blocks and joints modelled as interfaces, may 
be suitable for investigating masonry behaviour due to the small number of degrees of free-
dom (DOFs) needed for performing a numerical analysis of block assemblages. These as-
sumptions may be suitable for historical masonry, in which block stiffness is larger than joint 
stiffness, allowing to assume blocks as rigid bodies; moreover joint thickness is negligible if 
compared with block size, especially in case of dry joints, allowing to model joints as inter-
faces. Discrete models were adopted in the past by many authors for studying masonry out of 
plane behaviour in linear and nonlinear fields [5-10]. In particular, Cecchi and Sab [7] defined 
a simple and effective DEM for studying the three-dimensional behaviour of masonry panels 
with a small computational effort due to the small number of degrees of freedom involved. 
In this contribution, the original three-dimensional discrete element model (3D DEM) intro-
duced by Cecchi and Sab [7] in the linear elastic field, is extended to the field of collapse 
analysis by assuming a Mohr-Coulomb yield criterion for restraining interface actions. With 
this aim, a nonlinear -elastic perfectly plastic- interface behaviour is considered by assuming 
action restraints as elastic limits. The theoretical work of Orduña and Lourenço [8] is taken as 
reference for defining restraint conditions relative to interface shear force, torsion and their 
combination. Moreover, a static solution approach characterized by the determination of the 
stiffness matrix of the masonry assemblage is adopted, following and extending the procedure 
already adopted by authors for the nonlinear incremental analysis of masonry walls in plane 
loaded [11] and for the in and out of plane modal analysis of masonry walls [12,13]. Several 
numerical experiments are carried on in order to validate the proposed nonlinear DEM with 
respect to existing numerical and laboratory results. For first, numeric out of plane tests per-
formed by Orduña and Lourenço [9] are reproduced, then, the experimental campaign on 
scaled masonry-like specimens performed by Restrepo Vélez et al. [14] is taken in considera-
tion and several cases are reproduced with the proposed nonlinear DEM. In general, the pro-
posed numerical solution method turns out to be effective for the determination of limit loads 
and out of plane collapse mechanisms of the masonry walls considered. 
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2 THREE DIMENSIONAL DISCRETE MODEL 

A regular masonry with standard running bond periodic pattern is considered; the generic 
block ,i jB  is in contact with six neighbours by means of six interfaces or joints 

1 2,k kS , with k1, 

k2 = ± 1 for horizontal interfaces and k1 = ± 2, k2 = 0, for vertical interfaces (Figure 1). Block 
dimensions are: a (height), b (width) and s (thickness). 
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Figure 1. Discrete model, running bond Representative Elementary Volume (REV). 
 

Assuming rigid block hypothesis, the displacement of a generic block is represented by a rigid 
body motion referred to the motion of its centre and the rotation with respect to its centre: 

 , , , ,( ) ( )i j i j i j i j= + −u y u Ω y y . (1) 

Where ji ,y  is the position of block centre in the Euclidean space: ,
1 2( / 2)i j i b j a= +y e e ; 

considering the three dimensional case , , , ,
1 2 3{ }i j i j i j i j Tu u u=u  is the translation vector of jiB ,  

and ,i j
Ω  is the rotation skew tensor collecting block rotations with respect to coordinate axes: 
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In and out of plane block translations and rotations may be collected in 
, , , , , , ,

1 2 3 1 2 3{ }i j i j i j i j i j i j i j Tu u u ω ω ω=q . Following the procedure described in [7], the interactions 

between two adjacent blocks jiB ,  and 
1 2,i k j kB + +  through a generic interface 

1 2,k kS  are repre-

sented by interface tensions σ that are related to the relative displacement and rotations be-
tween adjacent blocks by means of a constitutive relation =σn K d , neglecting for simplicity 
apex k1,k2. Here σ is the stress tensor, n is the normal vector to the generic interface, K  is the 
interface stiffness matrix and d is the vector that collects interface relative translations: 
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and relative rotations: 
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and that may be written as 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,
1 2 3 1 2 3{ }k k k k k k k k k k k k k k Td d d δ δ δ=d . It is worth noting that 

in order to better highlight the relation between relative displacements and global block trans-
lations and rotations, the above expressions may be written in matrix form as 

1 2 1 2 1 2, , ,k k k k k k=d H q , where 1 2,k kq  collects translations and rotations of two adjacent blocks and 
1 2,k kH  may be defined as interface ‘compatibility’ matrix [15] that collects, following Equa-

tions (3)-(4), the relative distances between the centres of the blocks considered. 
Assuming initially the hypothesis of elastic interface behaviour, the interface stiffness matrix 
K  may be detailed for horizontal and vertical case: 1 2, diag{ }k k

h t n t r t rK K K K K K=K  and 
1 2, diag{ }k k

v n t t t r rK K K K K K=K , collecting tangential (Kt), normal (Kn) and rotational (Kr) 

stiffness of the interface. It is worth noting that rotational stiffness assumes the same value of 
normal stiffness (Kr = Kn), but it is defined by a different variable given that in the following 
description of interface nonlinear behaviour it will be necessary to distinguish between non-
linear behaviour of normal forces with respect to that of bending moments. Assuming mortar 
joints with an isotropic and elastic behaviour, interfacial stiffness values are function of mor-
tar elastic modulus Em and Poisson ratio νm [7]. 
The elastic energy of the interface is determined by defining the product of interface stresses 
and interface relative displacements: 
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where apex k1,k2 for vectors and matrices is omitted for simplicity, A is the generic (diagonal) 
matrix of area and inertias of the interface, that may be detailed for horizontal and vertical 
cases: Ah = diag{Sh Sh Sh Ih1 (Ih1+ Ih3) Ih3}, Av = diag{Sv Sv Sv (Iv2+I v3) Iv2 Iv3}, with 
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Interface forces and moments may be obtained by differentiating the expression of interface 
elastic energy in Equation (5) with respect to each block displacement component. Such un-
known forces 1 2 1 2 1 2, , ,

1 2 3, ,k k k k k kf f f  and moments 1 2 1 2 1 2, , ,
1 2 3, ,k k k k k km m m  may be collected in 

1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,
1 2 3 1 2 3{ }k k k k k k k k k k k k k k Tf f f m m m=f  and it can be easily demonstrated that 

1 2 1 2 1 2, , ,k k k k k k=f K d . 
Extending Equation (5) to the entire masonry assemblage (i.e. masonry panel), the total elastic 
energy Π is obtained and the subsequent equilibrium equation for the assemblage subject to 
generic in and out of plane actions Fext is: 

 / = ,ext panel= ∂Π ∂F q K q  (7) 

where q collects block displacements and rotations of the entire panel. Equation (7) may be 
solved by adopting a molecular dynamics algorithm [7] or directly by explicitly defining the 
stiffness matrix of the entire assemblage Kpanel, joining together the procedures already pro-
posed by authors [11-13] for the in and out of plane cases, respectively, and used separately in 
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the field of in and out of plane modal analysis of masonry panels and in the field of nonlinear 
analysis of masonry panels in plane loaded. In particular, the determination of panel stiffness 
matrix is based on the definition of a ‘compatibility’ matrix [15] Hpanel obtained by assem-
bling matrices 1 2,k kH  over the panel and that relates relative displacements of the entire panel 
dpanel with block displacements and rotations: panel panel=d H q . Then, panel stiffness matrix 

may be calculated as: ( )panel panel T panel panel=K H K H , where panelK  is a diagonal matrix col-
lecting interface stiffness values of the entire panel. 

2.1 Yield criterion for interface 

The nonlinear behaviour of interfaces is governed by a Mohr-Coulomb yield criterion, 
characterized by a cohesion c and a friction ratio µ = tanφ. For instance, dry interfaces cannot 
support tension and have a negligible cohesion, whereas mortar joints are characterized by a 
tensile strength σt and a cohesion value that may be determined by means of experimental 
tests (for instance EN 1052-3:2002). However, both interface types are characterized by a 
frictional behaviour and an unlimited compressive strength is assumed. 
Considering a generic interface and assuming a local coordinate system y1y2y3, with plane y1y2 
coincident with interface mid-plane and y3 orthogonal to it. Forces and moments exerted by 
two adjacent blocks at the interface centre are (Figure 2): normal force 3 3 3nf f=e e , shear 

forces 1 1 2 2,f fe e , bending moments 1 1 2 2,m me e  and torsion 3 3me . 
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Figure 2: Generic interface with local coordinate system and interface forces and moments. 
 

2.1.1 Normal and flexural interface strength 

Considering for first interface normal force and bending moments, the nonlinear behaviour 
is governed by tensile strength and a simple elastic-plastic relation between actions and rela-
tive displacements is adopted. Normal force and bending moments must satisfy the following 
conditions: 
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t n c
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= ≤
≤ −
≤ −

 (8) 

Where ft represents the tensile strength of the interface, defined as the product of joint tensile 
strength σt and area of the interface (Sv or Sh) and lci with i = 1,2 is the characteristic length of 
the interface with respect to interface plane directions, namely the maximum eccentricity of 
normal force with respect to block centre that may be supported by the interface. Each value 
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is equal to 1 2/ 2, / 4c cl s l b= =  for a horizontal interface and to 1 2/ 2, / 2c cl a l s= =  for a ver-

tical one. 
First and second conditions in Equation (8) have been already adopted by authors for the in 
plane case [11] and they turn out to be coincident to those adopted by Trovalusci and Masiani 
[16]. In particular, the first condition may be defined as ‘detachment’ condition, whereas the 
second and third ones may be defined as ‘rotation’ conditions with respect to y1 and y2 axis. 
The relationship between interface normal force and relative normal displacement and the re-
lationships between interface bending moments and relative rotations follow an elastic-
perfectly plastic behaviour. In particular, if the interface is subject to excessive moment, only 
its rotational stiffness is set equal to zero, whereas if the interface is subject to detachment, all 
interface stiffness values are set equal to zero: 

 
0,

| | ( ) 0 1,2.
n t n t r

i t n ci r

f f K K K

m f f l K i

> → = = =
> − → = =

 (9) 

2.1.2 Shear and torsion interface strength 

Differently than the in plane case, characterized by interface shear force acting together 
with a normal force and a bending moment, in the three dimensional case shear stresses are 
generated by two components of shear force f1 and f2 and by a torsion m3 and such stresses act 
together with normal stresses generated by normal force and bending moments. Limit condi-
tions for shear forces and torsion adopted here follow the expressions introduced by Orduña 
and Lourenco [8]. In particular, if torsion is not present, uniform shear stresses are assumed 
over the interface and the well-known Mohr-Coulomb yield criterion is applied to the resul-
tant of interface shear forces as follows: 

 2 2
1 2 3| | ( ) tan if 0.s t nf f f f f mϕ= + ≤ − =  (10) 

The condition above may be defined as ‘sliding’ condition and the quantity [( ) tan ]t nf f ϕ−  

represents the shear strength of the interface. It is worth noting that in this case the cohesion 
of the interface is represented by the shear strength in absence of a normal action, hence it can 
be assumed that such strength is equal to [ tan ]h tc S f ϕ=  for a horizontal interface and to 

[ tan ]v tc S f ϕ=  for a vertical one. 

If shear forces over the interface are equal to zero, the torsion generates shear stresses depend-
ing on relative rotation and on the distance from interface centre, that represents the twisting 
centre. Torsion over the interface must be less than the torsion strength as follows: 

 3| | ( ) tan if 0,t t n sm C f f fϕ≤ − =  (11) 

where Ct is the torsion constant defined in [8], that is based on an interface subdivision into 
eight rectangular triangles. If shear forces and torsion act together over the interface, the 
twisting centre moves away from interface centre and the shear-torsion interaction may be 
defined analytically by integrating shear stresses over the interface. The simplified shear-
torsion interaction curve defined by Orduña and Lourenço [8] is adopted. An elastic-plastic 
behaviour is assumed also in this case and if restraint conditions for shear force and torsion 
are not respected, the interface tangential stiffness Kt is set equal to zero, whereas normal and 
flexural stiffness values are not modified. 
In order to appreciate the correct adoption of shear and torsion nonlinear behaviour in the 
proposed DEM, a simple specimen of two blocks connected by an interface modelled with 
DEM is tested by applying to the interface an increasing torsion with several fixed values of 
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shear force and by applying an increasing shear force with several fixed values of torsion. 
Friction ratio µ = 0.7 is assumed and a normal force fn = 240 N is applied over the interface. 
Interface size are 0.2 m × 0.3 m. The following Figure 3 shows separately the torsion-relative 
rotation incremental curves for varying shear force and the shear force-relative displacement 
incremental curves for varying torsion. As expected, torsion strength decreases for increasing 
the applied shear force and similarly shear strength decreases for increasing the applied tor-
sion. Both groups of incremental curves allow to obtain the simplified shear-torsion domain 
proposed by Orduña and Lourenço [8]. 
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Figure 3: Incremental analyses of a simple specimen subject to increasing torsion with several values of fixed 
shear force and subject to increasing shear force with several values of torsion. 
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Figure 4: Torsion strength-bending moment interaction curves. 
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Finally, if bending moments act over the interface together with shear force and torsion, the 
effective area of the interface is reduced taking into account eccentricity values e1 = m2/fn and 
e2 = m1/fn, then the torsion constant Ct gets smaller, leading to a smaller torsion strength with 
respect to the case without bending moments. Considering again a simple specimen made of 
two blocks connected by an interface and varying both values of bending moments over the 
interface, Figure 4 shows the corresponding torsion strength values and the curves obtained 
numerically are in excellent agreement with those obtained analytically by Orduña and Lou-
renço [8]. 

2.2 Nonlinear DEM 

As previously stated, restraint conditions for interface forces and moments allow to define 
the elastic limits of force-relative displacement and moment-relative rotation constitutive laws, 
that are assumed to be elastic-perfectly plastic. Then, incremental analyses may be performed 
by applying incremental load steps to the discrete model and updating the stiffness matrix ac-
counting for local interface nonlinear behaviour. For instance, the stiffness matrix at a generic 
load step, needed for the evaluation of the corresponding increment of displacements iδq  and 

internal forces int
iF , is based on interface damage at the previous step as follows: 

1

1
( )( )

i

panel ext
iδ δ

−

−= qq K F  and 
11 ( )i

int int panel
i i iδ

−−= + qF F K q . Then, internal forces are corrected ac-

counting for the yield criterion adopted and residual forces int ext
i i= −R F F  are determined as a 

starting point of an iterative process of residuals minimization. 
In the following paragraphs, numerical tests are performed considering masonry panels sub-
ject to self-weight and increasing lateral loads (in or out of plane). Such loads are proportional 
to the weight (P ab sγ= , where γ is block volumetric weight) and are identified by the load 
multiplier λ; then, the vector collecting the total forces applied at block centres may be de-
fined as λ

ext
D L= +F F F , where FD represents dead loads, collecting block weight P and λFL 

represents unknown horizontal live loads (in or out of plane). 

3 IN PLANE NUMERICAL EXPERIMENTS 

In order to appreciate the effectiveness of the proposed nonlinear DEM, several numerical 
experiments of masonry panels in plane loaded by self weight and increasing lateral loads are 
performed. For instance, the numerical tests originally performed by Baggio and Trovalusci 
[17] and already studied by authors [11] are reproduced, obtaining the same results of previ-
ous in plane analyses (Figure 5). 

 

 
 

λ
DEM = 0.49; λREF [17] = 0.50 λDEM = 0.36; λREF [17] = 0.34 

 

Figure 5: Failure mechanisms for masonry panels subject to self weight and increasing in plane lateral loads. 
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4 OUT OF PLANE NUMERICAL EXPERIMENTS 

a b c  
 

Figure 6: Typical out of plane collapse mechanisms for a masonry wall [18]. 
 
In this paragraph, several numerical experiments are carried on in order to evaluate the ef-

fectiveness of the proposed nonlinear DEM in the determination of out of plane collapse 
mechanisms and limit loads of masonry panels. In particular, the typical mechanisms de-
scribed by Rondelet [18] are going to be reproduced numerically and several existing results, 
both numerical and experimental, are taken as reference. In particular, the first mechanism 
type defined by Rondelet is the typical out of plane rigid rotation of a free masonry wall with 
respect to its base (Fig. 6a), whereas the second mechanism regards a masonry wall restrained 
along a vertical edge by an orthogonal wall, leading to the formation of a diagonal crack and 
to a roto-translation of a triangular portion of the wall (Fig. 6b). This mechanism is character-
ized by a larger ultimate load with respect to the previous case. Finally the third mechanism 
regards a masonry wall restrained by two orthogonal walls at both vertical edges; in this case 
a vertical crack along panel axis of symmetry forms together with two diagonal cracks start-
ing from panel upper corners (Fig. 6c), leading to two triangular portions that rotate with re-
spect to diagonal cracks. In this last case, the ultimate load is larger than those of the previous 
mechanisms. 

4.1 Case studies proposed by Orduña and Lourenço 

a b 
 

Figure 7: Case studies considered originally by Orduña and Lourenço [9]. 
 
Two simple examples of masonry panels out of plane loaded are taken into account for 

first, by assuming as reference the numerical tests performed by Orduña and Lourenço [9]. In 
both cases masonry panels are made of blocks assembled following a running bond pattern 
and having dimensions a = 0.081 m, b = 0.210 m, s = 0.07 m and volumetric weight equal to 
20 kN/m3. Contacts between blocks are dry, with µ = 0.7 and null cohesion. In the first exam-
ple, panel overall dimensions are: length L = 0.630 m, height H = 1.053 m and thickness s = 
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0.07 m, obtained by assembling 3 blocks along panel length and 13 blocks along its height; 
moreover block translations are fixed along panel left column (Figure 7a). In the second ex-
ample panel dimensions are: L = 1.260 m, H = 1.053 m and s = 0.07 m, obtained with 6 
blocks along panel length and 13 blocks along its height. In this case, block translations are 
fixed along external columns (Figure 7b). 
Figure 8a shows a collapse mechanism characterized by a diagonal crack starting from the 
right side of the panel after the 2nd row of blocks. Such mechanism is in quite good agree-
ment with the one showed in the original analysis and the limit load obtained with the pro-
posed nonlinear DEM is included between FEM and limit analysis performed by Orduña and 
Lourenço (Table 1). Figure 8b shows a collapse mechanism characterized by a symmetric 
flexural deformation with large displacements along vertical axis of symmetry. Similarly to 
the previous case, collapse mechanism and limit load (Table 1) are in quite good agreement 
with reference solutions. 
 

a      b 
 

Figure 8: Failure mechanisms for the masonry panels studied by Orduña and Lourenço [9] modelled with 
DEM. 

 
 case 1 case 2 
λ

DEM 0.175 0.215 
λ

REF,FEM 0.210 0.260 
λ

REF,lim 0.127 0.193 
 

Table 1: Limit loads obtained with DEM and reference results of the masonry panels studied by Orduña and 
Lourenço [9]. 

 

4.2 Restrepo Vélez, Magenes and Griffith experiments 

In this paragraph, several experimental tests performed by Restrepo Vélez et al. [14] are 
taken as reference. Original tests were performed on scaled masonry-like specimens with dry 
joints, subject to self-weight and increasing out of plane loads by means of an inclined plane 
machine, in order to obtain out of plane failure mechanisms. Block dimensions are a = 28.24 
mm, b = 79.78 mm and s = 39.68 mm and block volumetric weight is 26.8 kN/m3. Dry joints 
are characterized by friction ratio µ = 0.7 and null cohesion. All cases are characterized by 21 
block courses along panel height and varying number n of blocks along panel length (from 4 
to 14, for instance). Panel restraints at one or both lateral edges were obtained with one or two 
orthogonal walls (Figure 9a and b, respectively); for this reason, several mechanisms turned 
out to involve also blocks in orthogonal walls. In the present campaign, the effect of orthogo-
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nal walls is simply modelled by restraining block translations and rotations along one or both 
lateral columns (Figure 9d and e, respectively). Then, the present model will not be able to 
represent complex collapse mechanisms involving orthogonal walls, leading to small differ-
ences between proposed numerical results and experimental tests. Moreover, an additional 
specimen type considered a panel without orthogonal walls simply supported at the base and 
loaded by several wooden beams (Figure 9c). 

 

a b c

d e f  
 

Figure 9: Masonry specimen types considered in the experimental campaign by Restrepo Vélez et al [14] (a-
c); corresponding specimens modelled with DEM in present analysis (d-f). 

 
Figure 10 shows failure mechanisms of several panels restrained along left column, varying 
the number of blocks along panel length (for further details about block number see the first 
row of Table 2). Mechanisms are characterized by a diagonal crack starting from lower-right 
panel corner, directed towards the upper-left panel corner and a triangular/trapezoidal portion 
of panel is subject to a roto-translation with respect to such diagonal crack. These mechanism 
types are in quite good agreement with experimental tests, moreover numerical results ob-
tained with the proposed nonlinear DEM are in quite good agreement with experimental re-
sults (Table 2), especially for specimens S11, S12 and S13, thanks to the large number of 
blocks of the models, whereas for specimen S15, characterized by a small number of blocks 
along panel length, limit load obtained with DEM is quite far from experimental result with 
respect to other cases. 
Figure 11 shows failure mechanisms of several panels restrained along both lateral vertical 
edges. Such mechanisms are characterized by a vertical crack along the axis of symmetry of 
the panel and diagonal cracks starting from lateral edges and moving down to panel axis of 
symmetry. Mechanisms are similar but not coincident with respect to those obtained experi-
mentally, due to the real restraint adopted for masonry specimens; however limit loads ob-
tained numerically with nonlinear DEM are still in quite good agreement with experimental 
results. 
Finally figure 12 shows the failure mechanism of a simply supported panel loaded by eleven 
wooden beams (16.46 N transmitted by each beam) and subject to increasing out of plane 
loads (see Figure 9c for the corresponding specimen type and Figure 9f for the corresponding 
DEM representation). The mechanism is characterized by a horizontal hinge in the upper por-
tion of the panel, along the joints between the 15th and 16th block courses and it is almost co-
incident with the real mechanism obtained during laboratory tests; similarly, the collapse load 
is close to the one evaluated experimentally. 
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Figure 10: Failure mechanisms for several masonry panels restrained along left column considered by Re-
strepo Vélez et al. [14] modelled with DEM. 
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Figure 11: Failure mechanisms for several masonry panels restrained along lateral columns considered by 
Restrepo Vélez et al. [14] modelled with DEM. 

 
S32 

 
 

Figure 12: Failure mechanisms for the masonry panel loaded by a set of wooden beams and simply supported 
at its base considered by Restrepo Vélez et al. [14] modelled with DEM. 

 
 S11 S12 S13 S15 S6 S1-S2-S3 S5 S32 

n 12 8 6 4 13 11 8 14 
λ

DEM 0.100 0.125 0.165 0.250 0.160 0.225 0.350 0.305 
λ

REF 0.097 0.129 0.181 0.199 0.208 0.208 0.349 0.293 
 

Table 2: Limit loads obtained with DEM and reference results of the masonry specimens considered by Re-
strepo Vélez et al. [14]. 
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5 CONCLUSIONS  

• In this contribution, the three-dimensional DEM introduced by Cecchi and Sab [7] for 
modelling regular masonry in the linear elastic field has been extended to the collapse 
analysis field by adopting a Mohr-Coulomb yield criterion and following the work of 
Orduña and Lourenço [8] for defining the interaction between interface shear forces, tor-
sion and bending moments. 

• The proposed nonlinear DEM for three-dimensional analysis turned out to be simple and 
effective in the determination of limit loads and collapse mechanisms of masonry panels 
having regular texture and dry joints, subject to self weight and out of plane loads. 

• Several numerical tests reproduced the laboratory campaign carried out by Restrepo Vé-
lez et al. [14], in this case the nonlinear DEM simulated correctly limit loads of the 
specimens taken into account. Moreover, considering collapse mechanisms, the ones rel-
ative to panels restrained by a lateral orthogonal wall have been reproduced correctly by 
the DEM, whereas small differences have been found in collapse mechanisms relative to 
panels restrained by orthogonal walls along panel lateral edges. 

• Further developments of the model will regard the assessment of nonlinear analysis of 
more complex masonry specimens, characterized for example by blocks arranged irregu-
larly, openings, lintels and also by real orthogonal walls and roofs. 
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