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Abstract. Adjoint methods are nowadays widely used to efficiently perform optimization for
problems with a large number of design variables. However, in reality, the problem at hand
might be subjected to uncertainties in the operational conditions or, in case of optimizing ge-
ometries, the design variables itself might be uncertain due to manufacturing tolerances. For
such applications, the optimum obtained using deterministic methods might be very sensitive to
small variations in the uncertainties, i.e. it lacks robustness. In a robust optimization, the un-
certainties are taken directly into account during the optimization process by introducing, next
to the mean objective, its variance as a second objective. This implies that, when using gra-
dient based optimization methods, the gradients of both objectives (mean and variance) must
be known. In this work the Polynomial Chaos Expansion (PCE) is used in combination with
adjoint methods to efficiently obtain both gradients. A non intrusive, regression based PCE is
used, requiring a new adjoint solution for each sampling point in order to build the PCE of
the gradient. A PCE for the objective is also built (at no extra cost) in order to compute the
gradient of the variance.

A weighted average of both gradients is then used to find an optimum. By changing the
weighting factors the solution can be found favouring either of the two objectives. The devel-
oped approach is applied to relevant engineering problems, such as geometrical optimization
of pipe flows and flow over airfoils. The design variables are the shape coordinates and no
parameterization is used. In this work, the design variables were considered deterministic with
the uncertainties coming from operational conditions.
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1 INTRODUCTION

With the increase in available computational power, CFD has evolved from an analysis tool
towards a design tool, see [1]. In the design process, CFD simulations are used in order to
find the value of the objective(s) for a given set of design variables. In order to find the best
design configuration, an optimization algorithm is then used to drive the design variables to
their optimal value, minimizing the objective(s), or, in case of conflicting objectives, leading to
a Pareto front.

The optimization techniques can be classified as gradient free or gradient based. Gradient
based approaches make use of the gradient (with respect to the design variables) of the objective
function, which provides the optimal search direction in the design space, see [2] and [3]. The
gradient free methods, essentially sample the design space and try to find the optimum solely
based on the value of the objective(s), see [4].

Depending on the parameterization, optimization problems often have a large number of
design variables, see [5] and [6], especially in the case of shape optimization. This makes
traditional techniques for gradient calculation, such as finite differences, which require an extra
flow simulation for every design variable, too expensive. An adjoint method offers a cheap
alternative as it allows to calculate the gradient, at roughly the cost of an extra CFD simulation,
independently of the number of design variables, see [7]. Adjoint solvers can be classified as
discrete or continuous, depending on how the adjoint equations are derived, see [8] and [9].
Both approaches have their positive and negative aspects and the choice of one or the other
method is usually related to a personal preference.

While advances in computational capabilities and numerical techniques lead to a widespread
use of optimization algorithms to design engineering components, these are mainly employed
on deterministic problems. This means that all the design conditions are well defined, im-
mutable and are assumed to be an exact representation of the reality. However, in real world
applications this is seldom the case as the operational conditions may significantly differ from
the design conditions. Moreover, due to manufacturing tolerances, the finished component may
be slightly different than the optimal design. Due to the high number of uncertainties in the
manufacture and operating life of any engineering component, a deterministic optimization ap-
proach may result in an optimum that is very sensitive to all those small uncertainties, leading
to a lower performance than desired. Consequently, an optimization methodology that takes
into account the robustness of the design is of special interest for real world engineering appli-
cations.

In a robust optimization setting the objective is to reduce both the value of the mean objective
and its sensitivity to operating and manufacture uncertainties. To this end, when using a gradient
based optimization method, the gradients of both mean objective and of its variance must be
known. These gradients are then combined, using weighted averaging, to find the best solution
for each problem. In the case of conflicting objectives, e.g. the design corresponding to the
minimum objective is not robust (has high variance), a Pareto front, or part of it, can be built by
varying the weights given to each gradient. In such a case is the design engineer responsibility
to chose a suitable compromise.

The success of the robust optimization algorithms is intrinsically connected to the perfor-
mance of the chosen uncertainty quantification (UQ) method. In intrusive PC approaches, the
PC expansion is directly embedded in the code leading to a less expensive methodology than the
non-intrusive approaches. However, their implementation is cumbersome and prone to errors
and involves deep knowledge of the CFD code. An example of an intrusive approach can be
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found in [10]. On the other hand, non-intrusive methods such as Monte-Carlo and Non-Intrusive
Polynomial Chaos (NIPC) have the need for an higher number of function evaluations, but the
implementation is straightforward and independent of the problem being studied, see [11].
However, the number of required samples will increase exponentially with the number of un-
certainties and the order of the polynomials. This is known as the curse of dimensionality.

In order to calculate the gradient of the mean objective and of its variance, PCEs of the
objective and of its gradient are required. To this end, both the primal and adjoint solutions
are needed in each sample point. As the samples are independent of each other they can be
evaluated in parallel reducing the overall simulation time.

In order to compute the gradient of the variance, a PCE is also built for the objective. This is
done at no extra cost since the objective samples are calculated form the primal solution at each
sample.

In this work the uncertainties are restricted to finite physical quantities. A uniform distri-
bution for the stochastic variables is chosen. Consequently the polynomials, used for building
the PCE expansion, are the Legendre polynomials, see [12]. In order to find the polynomial
coefficients an overdetermined system is solved using regression.

2 GRADIENT BASED ROBUST OPTIMIZATION

A general minimization problem can be written as:

minimize J(U, α)

subject to R(U, α) = 0
(1)

where J is a cost function to be minimized, R is the set of governing equations, U the state
variables of the primal problem and α the design variables. In a gradient based optimization, the
gradient of the cost function with respect to the design variables, i.e. dJ

dα
, has to be calculated.

dJ

dα
=
∂J

∂α
+
∂J

∂U

∂U

∂α
(2)

Where the term ∂U/∂α depends on the primal solution, and so it is expensive to find. Taking
into account that

dN

dα
=
∂R

∂U

∂U

∂α
+
∂R

∂α
= 0 (3)

eq. 2 becomes:

dJ

dα
=
∂J

∂α
− ∂J

∂U

(
∂R

∂U

)−1
∂R

∂α
(4)

Introducing λ, the vector of the adjoint variables:(
∂R

∂U

)T
λ =

(
∂J

∂U

)T
(5)

eq. 4 can be rewritten as:

G =
dJ

dα
=
∂J

∂α
− λT ∂R

∂α
(6)

Eq. 6 does not depend on the primal solution. Hence the calculation of the gradient with
respect to any design variable α is reduced to the calculation of simple partial derivatives.
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2.1 Stochastic Adjoint Based Gradient

The stochastic gradient G(ξ) can be written as PCE of order p for n random non-design
variables ξ ≡ {ξi}ni=1 as:

G(ξ) =
P∑
i=0

Ĝiψi(ξ) (7)

where the total number of terms on the expansion is given by P+1 = (p+n)!
p!n!

andGi represents
the ith random mode of G(ξ).

In order to find the components of the PCE (Gi), a regression approach is chosen. An overde-
termined system is built:

ψ0 (ξ1) ψ1 (ξ1) · · · ψP (ξ1)
ψ0 (ξ2) ψ1 (ξ2) · · · ψP (ξ2)

...
... . . . ...

ψ0 (ξns) ψ1 (ξns) · · · ψP (ξns)



Ĝ0

Ĝ1)
...
ĜP

 =


G (ξ1)
G (ξ2)

...
G (ξns)

 (8)

where G (ξ1) , ...G (ξns) are the gradients calculated at each sample, Ĝ0, ...ĜP are the com-
ponents of the polynomial of order p and ξ0, ...ξns are the ns samples mapped in the chosen
polynomial domain.

When using regression to find the PCE components, the advised number of samples is two
times the total number of terms in the PC expansion, ns = 2 ∗ (P + 1), [13].

2.2 Gradient of the Variance

Although both the mean (Ĝ0) and variance (σG) of the gradient can directly be calculated
from eq.(7), in order to do robust optimization the gradient of the variance of the objective
(∇σJ ) is also required.

From Eq. 6 and eq.(7) it comes directly:

G(ξ) =
dJ

dα
(ξ) =

P∑
i=0

Ĝiψi(ξ) (9)

On the other hand, a PCE of the objective functional gives:

J(ξ) =
P∑
i=0

Ĵiψi(ξ) (10)

Taking the gradient one can write:

dJ (ξ)

dα
=

P∑
i=0

dĴi
dα

ψi (ξ) (11)

Comparison with equation 9 gives:

Ĝi =
dĴi
dα

(12)
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The first term in the PCE of eq.(10), Ĵ0, is the mean objective. According to eq.(12), the
gradient of the mean objective, follows from the PCE of the gradient:

Ĝ0 =
dĴ0

dα
. (13)

Furthermore:

Ĝi =
dĴi
dα

(14)

For uniform distribution the variance of the objective can be written as:

σ2
J =

Ĵ2
1

3
+
Ĵ2

2

5
+ · · · (15)

Taking the gradient:

∇σ2
J =

d

dα

(
Ĵ2

1

3
+
Ĵ2

2

5
+ ...

)
=

(
1

3

dĴ1

dα
Ĵ1 +

1

5

dĴ2

dα
Ĵ2 + ...

)
= 2

(
1

3
Ĝ1Ĵ1 +

1

5
Ĝ2Ĵ2 + ...

)
(16)

As an example, for a second order polynomial one obtains:

∇σ2
J = 2

(
1

3
Ĝ1Ĵ1 +

1

5
Ĝ2Ĵ2

)
(17)

2.3 Optimization

For the optimization process, a weighted combination of the two gradients is used as:

Gt = ωĜ0 + (1− ω)∇σ2
J (18)

Where, Gt is the effective gradient to be used during the optimization and ω is a weighting
coefficient to be chosen by the user.

αn+1 = αn − β ∗ dJ

dαn
(19)

where α is a vector containing the design variables and αn+1, αn are respectively the updated
and the original values. β is a scalar that is chosen iteratively, i.e. it can change at each iteration,
in order to guarantee a smooth optimization process.

As no parameterization is used, every mesh point on the surfaces to optimize is a design
variable. This gives a lot of freedom in the shape modifications which can lead to unrealistic
oscillatory shapes. An implicit smoothing algorithm is employed to make sure the optimized
surface remains smooth. In order to maintain the quality of the mesh in the laminar test cases
the mesh is smoothed by solving a Laplacian equation, see [14]. For the turbulent test cases, in
order to maintain a proper boundary layer resolution, the problem is remeshed.

A optimization problem with deterministic design variables and using a steepest descent
optimization is described in algorithm 1.
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Algorithm 1 Non-Design Stochastic Variables
1: Set tol, Uinitial
2: while 〈G0〉 > tol do
3: {
4: Sample ξ1, ξ2...ξns

5: for i = 1→ ns do
6: {
7: Solve primal problem, U(α, ξi)
8: Compute Objective J(α, ξi)
9: Solve adjoint problem, λ(α, ξi)

10: Compute gradient G(α, ξi))
11: }
12: end for
13: Use regression to find Ĝ0, ..., ĜP and Ĵ0, ..., ĴP
14: Compute gradient of the variance∇σ2

J

15: Compute Gt using Eq. 18
16: α = α− βGt

17: }
18: end while
19: End

3 NUMERICAL IMPLEMENTATION

Both the primal and adjoint problems are solved using the the SIMPLE algorithm in Open-
FOAM. The steady state solution is achieved using an Euler implicit time scheme. Bounded
central schemes are used for the numerical discretization of both the primal and the adjoint
problems, see [15]. In the turbulent test cases, the turbulence in the primal problem is mod-
eled using a RANS approach. The Spalart-allmaras model is chosen and the boundary layer is
modeled by means of wall functions. For the adjoint solver, a frozen turbulence approach is
used.

The sampling needed for the Latin Hypercube scheme, ensuring a good spread of the samples
in the stochastic space. The random number generator is connected to the time and date of
the machine in order to guarantee randomness. The samples are all obtained in [0, 1]n and
then mapped into the stochastic variable distribution. For a uniform distribution U [xa, xb], the
mapping is simply a projection, [0, 1] → [xa, xb]. The PCE terms are found by solving the
overdetermined problem by using a regression approach.

4 TEST CASES

4.1 2D U-bend

A common fluid mechanics problem found in engineering applications is the minimization
of total pressure loss in flows through piping systems.

For an arbitrary pipe shape, the total pressure loss (the objective to minimize) can be written
as:

J =

∫
∂Ω

Ptdṁ (20)

where, Pt is the total pressure, ∂Ω the domain’s boundary, and dṁ the elementary mass flux
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through the boundary.
In this test case we consider the robust optimization of a U-bend under operating uncertain-

ties. This type of bend is commonly found as part of a larger serpentine in applications such
as heat exchangers. For serpentines with a high number of U-bends, the accumulated pressure
drop through all the U-bends may severely impair the total efficiency of the system. As a result
it is crucial to the reduce the pressure drop at each bend.

In a robust optimization setting the problem can be written as:

minimize : µ(J), σ(J) (21)

Figure 1: U-bend pipe.

The initial shape and dimensions of the U-bend are shown in Figure 1. For this test case
D = 0.075m and the deterministic Reynolds number is Re = 400. The laminar Navier-
Stokes equations are therefore considered for the primal and the adjoint. In this test case the
optimization is restricted to the outer wall of the U-Bend. The inlet velocity is considered
as uncertain with a uniform distribution Uinlet = [0.066, 0.084]m/s. A 2nd order polynomial
chaos method is used in J , requiring six samples at each optimization step to get the PCEs of
the objective and its gradient.

Figure 2: Mesh independence test.

Figure 2 shows the error in the calculated total pressure drop on meshes of different size.
The solution on a very fine mesh of 36000 cells is considered as a reference solution. It is
observed that for a mesh with ≈ 9000 cells, the error on the pressure drop is less than 1%. This
mesh is therefore considered as a realistic mesh for the problem at hand, suitable for use in the
optimization process.
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Figure 3: µ(J) and σ2 evolution during optimization using ω = 1.

In Figure 3 the evolution of the mean objective and the variance during the optimization are
shown for ω = 1. Both the variance and the mean objective are nondimensionalized by their
values at the beginning of the optimization process (µ(Jinitial), σ2

initial). It can be observed that
the optimization of the mean objective also leads to a lower variance, hence the optimal solution
(lowest pressure drop) is additionally a robust one. This conclusion is further supported by
observing that σ

J
is almost constant through the optimization process.
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Figure 4: Deterministic and Robust optimization using ω = 1, 0.5 and 0.

Figure 4 shows the evolution of the variance and the mean objective for different values of ω.
Taking into account that the optimal is a robust one, optimizing the mean objective, ω = 1, or
the variance, ω = 0, will lead to very similar results. However, it can be observed that there are
small differences between the different cases. For ω = 1, the optimal mean objective reaches
its lowest value and the variance is the highest. On the other hand, for ω = 0, the variance
reaches its lowest value whereas the objective is at its highest. Furthermore, for ω = 1 the mean
objective presents a smooth optimization but the variance is oscillating, which indicates that a
minimum has not been reached for the latest. The opposite happens for ω = 0.

It can be observed that for an intermediate value of ω = 0.5, both the mean objective and
the variance take intermediate values. This shows that combining both gradients can be used to
obtain a mix between optimal and robust results.
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Table 1: Deterministic operational conditions.

U 102m/s
Re 6× 106

AoA 1◦

Table 2: Lift and Drag coefficients for NACA 0012 at AoA = 1◦ and Re 6× 106.

Cl Cd L/D
Numerical 0.109 0.0089 12.25
Reference NASA-SA 0.110 0.0085 12.94
error [%] 0.9 4.7 5.3

Finally it is important to notice that the optimization of the mean objective, ω = 1, shows an
almost perfect correspondence with the deterministic optimization.

Figure 5: Initial(Pink) and optimal shapes. Deterministic(Blue), ω = 1(Black), 0.5(Red) and 0(Green) .

Figure 5 depicts the optimal shapes obtained with the different approaches. As expected
from the previous results analysis, all the obtained optimal shapes are similar. In all cases,
there is an asymmetrical swelling of the U-bend more pronounced on the side where the flow
exits the U-bend. Furthermore, the optimal shape obtained using ω = 1 is the closest to the
one obtained in the deterministic problem whereas the shape obtained using ω = 0 shows the
largest differences.

4.2 2D Airfoil

In this section the robust optimization of a subsonic airfoil with uncertainties in the operating
conditions is considered. The deterministic objective is to maximize the Lift-to-Drag ratio
(L/D). The robust optimization problem is the defined as:

minimize : µ(−L/D), σ(−L/D) (22)

The initial airfoil is a NACA 0012 and the deterministic operational conditions are given in
Table 1.

The chosen turbulence model is the Spalart-Almaras with wall functions. A C-type mesh
of 80000 cells is used. The numerical results are compared to the reference results of [16] in
Table 2. A good comparison is observed confirming that the size and the quality of the mesh is
appropriate.
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Table 3: Random variable distributions.

Random Variable Probability distribution
AoA ◦ Uniform [0.5,1.5]
U [m/s] Uniform [98.84,105.2]

The random variables for this test case are the freestream velocity and the angle of attack
with uniform distributions as listed in Table 3.

The number of samples required to find the PCE coefficients dramatically increases with the
order of the PCE expansion. As each sample involves a primal and an adjoint CFD solutions,
the methodology becomes prohibitively costly for high order PCEs.

Figure 6: Response surface for −L/D.

Figure 6 shows the response surface for−L/D in relation to the stochastic variables (mapped
to [-1 1]). It can be observed that all the samples lie in a plane. This indicates that a first order
PCE is sufficient to accurately capture the response.

Figure 7: Sensitivities of the mean objective (µ(J)) and variance (σ2). u and l refer respectively to the upper and
lower surfaces of the airfoil.

In Figure 7 the initial surface sensitivities for the mean objective and variance are shown.
It can be noted that for the upper surface both sensitivities are positive corresponding to an
outward movement of the nodes. On the lower surface, the variance sensitivities are also positive
but the mean objective sensitivities change sign, meaning that towards the trailing edge the
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Table 4: Optimal Cl and Cd at AoA = 1◦.

Cl Cd µ(L/D) σ2 µ(L/D)− σ µ(L/D) + σ
Initial 0.109 0.0089 12.25 12 8.79 15.71
ω = 1 0.204 0.0094 21.17 9.19 18.14 24.20
ω = 0 0.099 0.0109 9.34 7.72 6.59 12.12

nodes will move inwards leading to slightly cambered airfoil. It is also to be mentioned that the
leading and trailing edges are fixed.

(a) ω = 1 (b) ω = 0

Figure 8: Evolution of µ(−L/D) and σ2 during the optimization.

The evolution of the variance and the mean objective during the optimization using ω = 1
and ω = 0 are shown on Figure 8 and the final results are summarized in Table 4. For ω = 1
the evolution of the µ(J) and σ2 are similar, indicating that the airfoil corresponding to the
optimal mean value is also more robust than the initial airfoil. On the other hand, when ω = 1,
µ(J) and σ2 have opposite behaviors indicating that a very robust airfoil will have a poor mean
performance. It can also be observed that although the variance is reduced in both cases, the
lowest value is obtained when the gradient of the variance is used. Moreover, the evolution
of the variance during optimization with ω = 0 is much smoother than when optimizing with
ω = 1. Finally, it is interesting to notice that even in a pessimistic scenario, L/D = µ(L/D)−σ
on the airfoil obtained when optimizing the mean of the objective, is still better than the L/D
of original airfoil or µ(L/D) of the airfoil obtained using ω = 0.

Figure 9: Initial(Green) and optimal shapes: ω = 1(Red) and 0(Blue) .

The optimal airfoil shapes are shown in Figure 9. For the airfoil obtained using ω = 1,
the most noticeable differences can be observed on the upper surface and the leading edge.
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The increase in thickness on the leading edge results in a higher acceleration of the flow over
the airfoil creating a region of low pressure and increasing lift. Moreover, the upper surface
experiences a much larger deformation than the lower surface, thus, the resulting airfoil will
have a small curvature which additionally contributes to the increase of lift.

On the other hand, for the case with ω = 0, the optimal airfoil is overall much thicker than
the initial configuration. This explains the increase in drag and suggests a lower sensitivity to
the angle of attack explaining the smaller variance. It is important notice that no constraints
where imposed in the optimization.

(a) (b)

Figure 10: Initial (a) and final (b) pressure distribution for ω = 1.

Figure 10 depicts the pressure contours for the initial and optimal airfoil using ω = 1. It
can be observed that the low pressure region in upper surface on the optimized airfoil is much
more intense than on the initial one. This explains the large increase in the lift on the optimized
airfoil when compared to the initial configuration.

As a last comment, given the relativity small change of the airfoil shape, especially if ω = 1,
it seems that the current solution is only a local optimum. Other shapes might be found starting
from another initial airfoil. In order to retrieve the Pareto front it seems advisable to combine
the gradient based approach with an evolutionary algorithm.

5 CONCLUSIONS

A robust gradient based shape optimization using PCE has been developed. The gradient
used in the steepest descent is a weighted average of the gradient of the mean objective and the
gradient of its variance. by changing the weights, solutions favoring either mean or variance
can be found.

Two test cases are presented.
In the first test case, a U-bend, the optimal solution obtained using the gradient of mean

objective was found to be also a very robust one. Therefore, and as expected, the optimization
of the variance led to a similar optimal solution. The small differences found on the optimal
solutions agreed with the chosen value for ω.

In the second test case, a 2D airfoil under turbulent subsonic flow, the optimization of the
mean objective and the variance led to two very distinct configurations with somewhat con-
flicting objectives. The observed changes in the airfoil shape are rather small, especially if a
high weight was given to to optimizing the mean objective. This suggests a local optimum,
and a dependency on the initial airfoil configuration. In order to retrieve a global optimum and
the Pareto front, a combination with evolutionary algorithms seems indicated. This will be the
subject of future research.
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