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ABSTRACT  
 
Isogeometric Analysis (IGA) [5] is a promising concept that establishes a close link between 
the technologies of CAD (computer aided design) and numerical simulation via finite element 
analysis (FEA). In the IGA framework, the same function spaces, which are used for the ge-
ometric representation of the computational domain, are used for the approximation of the 
problem unknowns. There are several computational geometry technologies that could serve 
as a basis for IGA with Non-Uniform Rational B-Splines (NURBS) being the most widely 
adopted due to their popularity in CAD software. In contrast with FEA where there is a very 
broad spectrum of solution techniques for the fast and efficient solution of the linear or linear-
ized systems that occur [1-4], IGA solution schemes are still an open issue. With respect to 
domain decomposition techniques, the Isogeometric Tearing and Interconnecting (IETI) [8] 
method combines the advanced solver design of dual domain decomposition methods with the 
exact geometry representation of IGA, relying on patches for the subdivision of the domain. 
In this work, an innovative solution scheme is presented, showcasing greatly enhanced per-
formance when compared to the established and tested solution schemes for IGA and its nu-
merical performance is exhibited in numerical examples. 

1 SOLUTION TECHNIQUES 
Iterative methods to solve a linear system such as Conjugate Gradient (CG) method [1, 2] are 
commonly used with the aid of a preconditioner [3, 4] to ensure fast convergence of the meth-
od. In our case, we employ a Preconditioned Conjugate Gradient (PCG) method in which the 
preconditioner is not a matrix as commonly thought of in numerical analysis, but a transfor-
mation in the wider mathematical sense. In the following sections, we will explain the need 
that led us to the proposal of a transformation, compare two different approaches of the new 
"preconditioner" and explain thoroughly the optimal among the two. 

1.1 Large – scale problems in IGA 
IGA is a method that was initially proposed by Hughes et al. [5] and envelops both the ge-

ometric information of the structures as well as the analysis mesh and data in one single mod-
el. Since 2005, that first appeared, IGA has gained a wide acceptance by the scientific 
community as it gradually establishes its background and grows rapidly. This raises the need 
of researchers to solve constantly large and more complex problems utilizing this promising 
method. These problems are of the form: 

 Ku f=  (1) 

where K is the stiffness matrix, f is the applied force field and u is the displacement field. 



Unfortunately, the major advantage of IGA i.e.: higher Continuity Shape Functions, becomes 
a disadvantage. For example, NURBS Shape Functions span through several Isogeometric 
Elements which inevitably leads to a denser Stiffness Matrix with a greater bandwidth in 
comparison to simple Finite Elements. 

 Since complexity of a solver increases with increasing continuity [6, 7] it is crucial for the 
further evolution of IGA, the development of an algorithm that will provide both high accura-
cy and minimized time complexity compared to the existing techniques. IETI that was pro-
posed in [8], is a powerful method that divides the problem into a multitude of independent 
problems and thus reduces the complexity of a large scale system. The major drawback of this 
approach is that the number of subdomains must be identical to the number of patches present 
to an IGA model. This means that subdivisioning is mesh-dependent which makes both load 
balancing and scalability to suffer in high performance computing environments. On the other 
hand, increasing the number of subdomains by inducing discontinuities in a model, increases 
the error and discontinuities in second-order characteristics like stress and strain.  

1.2 The PCG-IETI method 
In order to circumvent the aforementioned drawbacks, a new model with stiffness matrix 

pK  is introduced which we will refer to as “patched model” and has the geometry of the orig-
inal model with appropriately induced discontinuities in the form of patches, in order to sub-
divide the original model appropriately. Due to the fact that there are errors introduced due to 
these discontinuities but the geometry of the problem is identical, the original and patched 
models constitute near-by problems with the stiffness matrix of the original model being 
equal to pK K K= + ∆ . 

Let’s consider the PCG algorithm, equipped with a preconditioner following the rationale 
of incomplete Cholesky preconditionings which feature an error matrix iE . This matrix is 
usually defined by the computed positions of small elements in the lower triangular matrix 
produced by the incomplete Cholesky factorization procedure, which do not satisfy a speci-
fied magnitude criterion and therefore are discarded [15]. Considering the near-by problem of 
the form ( )pK K u f+ ∆ = , if matrix iE  is taken as K∆ , the preconditioning matrix becomes 

the initial matrix pA K= . The repeated solutions required for the evaluation of the precond-

tioned residual vector 1k kz A r−=   are performed using IETI and are treated as problems with 
multiple right-hand sides.  

In contrast to models generated using FEA, IGA-generated models with the same geometry 
but different patches have different number of degrees of freedom (dof). This means that the 
residual vector kr  cannot be used in order to perform the evaluation of the preconditioned re-
sidual vector using matrix pK . Even if that was possible, this evaluation would produce a 
vector with a different size compared to the vectors produced using matrix K. In order to cir-
cumvent this problem, a transformation between these two IGA meshes is employed. Specifi-
cally, with the aid of double transformation, the residual of the original model is being 
mapped to the patched model space and after the preconditioned residual vector evaluation, 
the solution is being mapped back to the original model space. 

The PCG algorithm, equipped with the latter double-transformation preconditioner 
throughout the entire solution process, constitutes the PCG-IETI method. The PCG-IETI 
method feature both load balancing and scalability properties without compromising the accu-
racy of the model. 
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(a) Example of a Simple Cantilever split into four patches (patched model). 

 
(b) Example of the same Cantilever modeled as a single patch (original model). 

Figure 1: Cantilever examples – Black continuous lines illustrate the patch border and squares illustrate the Con-
trol Points in each case. Dotted lines depict the Control Net.  

2 MAPPING 

2.1 Shape Functions Mapping 
Since the implementation of PCG-IETI requires a transformation between two different 

meshes, we utilized the intergrid transfer operator R - Restriction operator for the transfer of 
the fine grid information to the coarse one and the prolongation or interpolation Operator I for 
the transverse transfer from the coarse to the fine grid [10]. In our case, we use the full 
weighting Operator R [11] which is derives from interpolation Operator using: 

 TR c I= ⋅   (2) 

So by defining the interpolation operator I the transformation of the two meshes will be 
completed for application in the iterative solver. For finite elements purposes, a simple linear 
interpolation between the nodal values is adequate for the intergrid transfer, but since the ap-
plication will be in the field of Isogeometric Analysis, the choice was to use a more complex 
interpolation that would provide better results taking into account the increased continuity of 
the Isogeometric method. Our choice is to use NURBS shape functions. The interpolation be-
tween the two control meshes is performed considering the Control Point parametric coordi-
nates when the isoparametric domain in each direction spans in [0, 1]. Given the same 
parametric domain both coarse and fine mesh can transfer information between each other 
with simple interpolation. 
 

 



(a) Approximation of an existing Control Point 
with the aid of NURBS interpolation. We ob-

serve that the point’s value is defined with 
the aid of nine Control Points. 

(b) Approximation of a non-existing Control Point 
with the aid of NURBS interpolation. We ob-
serve that the point’s value is defined with the 

aid of six Control Points. 

Figure 2: Domain of influence using NURBS interpolation. Rhinoceros [9] software was used. 
 
In the next subsections we provide a brief description of Shape Function in Isogeometric 

Analysis. 

2.1.1. B-Splines 

Given a degree p 0≥   of the shape functions and an ascending sequence 

{ }1 2 n p 1, ,..., + +Ξ = ξ ξ ξ  of n+p+1 real values called Knot Vector, where n is the number of Con-
trol Points the B-Splines can be calculated using the recursive Cox-de Boor algorithm. Note 
that we only use open Knot Value Vectors which implies that the first and last Knot Value has 
multiplicity of p+1 and the internal values multiplicity m lower or equal to p. The recursive 
formulation of B-Splines starts with constant shape functions of degree p=0. 

 ( ) i i 1
i,0

1,  if ξ
N

0,        otherwise
+≤ ξ < ξ

ξ = 


  (3) 

For degree p>0 B-Splines are defined using p-1 degree according to the following formula: 
 

 ( ) ( ) ( )i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

N N N+ +
− + −

+ + + +

ξ − ξξ − ξ
ξ = ⋅ ξ + ⋅ ξ

ξ − ξ ξ − ξ
  (4) 

It must be noted that in the fractions of equation (3), when a denominator equals zero then 
the fraction’s value is considered as zero. 

2.1.2. NURBS 
NURBS are produced using both B-Spline functions and the weights of the Control Points. 

NURBS curves are given by: 
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In a similar way we can define two and three dimensional NURBS Shape Function. 
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The resulting univariate, bivariate or trivariate NURBS Shape Function are used for inter-
polation of the new Control Points with known parametric coordinates. Interpolation is used 
for approximation of both displacements and forces of the new Control Net using the follow-
ing: 

 

 x i x,i y i y,i z i z,iu N u             u N u             u N u= ⋅ = ⋅ = ⋅∑ ∑ ∑   (7) 

 
As eq. (6) shows that the approximation of the displacements of e.g. the patched Control Net 
is performed using the displacements and Shape Functions of the unpatched one and vice ver-
sa. In the case of forces, the transpose of the Shape Functions is used. Specifically, for calcu-
lation of the forces of the patched model, the forces of the unpatched are used with the 
transpose of the patched shape functions and vice versa which sums up to: 
 

 T T T
x i x,i y i y,i z i z,if N f             f N f             f N f= ⋅ = ⋅ = ⋅∑ ∑ ∑   (8) 

 
 

2.1.3. Cook Cantilever Example  

In order to illustrate the performance of the NURBS Shape Function transformation, a 
cook cantilever was examined. The transformation had to transfer the information from the 
single-patch cantilever with 11x3 Control Points to a Cantilever subdivided into 9 patches 
with resulting 19x3 Control Points as shown in Fig. 1. By applying the transformation to this 
model we approximate displacements and forces. In Table 1 we can see how the approxima-
tion works by using norms of the resulting values compared to the initial ones. Even thought 
at first the approximated displacements seem close enough based on the total norms, the third 
and norm clearly depicts that an error up to 8% is induced using this technique. 

 
 Unpatched Patched 

( )exactnorm U   0.1283 0.1561 

( )approximatenorm U    0.1294 0.1571 
Error norm 7.15% 7.94%  
Table 1: Performance of transformation on displacements using Shape Functions. 

 

In case of forces, the error as shown in Table 2 dramatically increases. Unfortunately, this 
approach does not only create an error of the value but also changes the loading as clearly il-
lustrated in Fig.3. This causes the algorithm either to converge real slow or in some cases 
even diverge due to the large error created in every intergrid approximation. In case of non-
linear analysis, wrong estimation of both internal and external forces, can result to much 
greater error induced in the solution procedure and thus wrong results. 

 

 



 Unpatched Patched 
( )exactnorm F   141.4214 141.4214 

( )approximatenorm F    136.9306 136.9306 

( )
( )

exact approximate

exact

norm F F
norm F

−
  43.3% 43.3% 

 
Table 2: Performance of transformation on forces using Shape Functions. 

 

 

(a) Loads on a Cantilever before transfor-
mation 

 

(b) Load on the Cantilever after the transfor-
mation 

Figure 3: Changes of the Cantilever Loading due to the transformation. Rhinoceros [9] software was used. 

 

2.2 Isogeometric Refinement Mapping 
The second approach of the mapping was based on Isogeometric Refinement. Since our 

goal is to transfer information between two meshes that are based on the same structure, re-
finement as proposed in [5] can be considered the best tool applicable. It is used to calculate 
coordinates and weights of the new Control Points keeping the geometry unchanged, so it 
seems logical to approximate the data needed using this method. In [12] it is clearly illustrated 
how a structure can be analyzed using multiple separate patches, yet it is very important to 
explain the link with Isogeometric refinement in our case. Following the inverse procedure of 
[12] we want to segment one single patch into multiple individual subdomains for the sake of 
our iterative solver.  

2.2.1. h-Refinement  

The refinement algorithm that will be used in the aforementioned transformation is h-
refinement or knot insertion. For a known knot value vector Ξ={ξ1, ξ2,…,ξn+p+1} we want to 
introduce new knot values on increase the multiplicity of already known ones. For each one of 
the new inserted knot values the number of control points is increased by one. Their coordi-
nates and weights B  are computed  

 pB T B= ⋅   (9) 



George Stavroulakis, Dimitris Tsapetis and Manolis Papadrakakis 

Where 

 

 ( )0 j i j 1
ij

1,  if ξ
T

0,        otherwise
+ ≤ ξ < ξ

ξ = 


  (10) 

and 
 

 i q j j q 1 i qq 1 q q
ij ij ij 1

j q j j p 1 j 1

T T T+ + + ++
+

+ + + +

ξ − ξ ξ − ξ
= ⋅ + ⋅
ξ − ξ ξ − ξ

  (11) 

 

2.2.2. Multiple patches segmentation 
In Fig.4 we observe the 1D shape functions of a structure model as one patch. It is known 

from[13]that NURBS [13] Shape functions have a continuity of Cp-m over knots, where p is 
the polynomial degree of the function and m is the multiplicity of the knot. Fig. 4 shows 
NURBS of degree p=2 with C1 continuity on knots. Using Knot Insertion algorithm of Isoge-
ometric Refinement we raise the multiplicity of selected knots creating a C0 continuity result-
ing in Fig. 5. 

 

 
Figure 4: 1D NURBS of one single patch. 

 
 

 
Figure 5: 1D NURBS of one single patch with C0 continuity over selected knots. 

 
 
In Fig.6. we observe the domain after the knot value insertion resembles to several inde-

pendent subdomains united as one by merging their C-1 boundary shape function into a new 
C0 one. In addition to the shape function the boundary Control Points between the two sub-
domains coincide. Considering that they have an independent role for each subdomain we re-
sult in Fig.7. where now every patches are independent and when combined with its data can 
be processed as a separate entity like in Fig.8. only take into account the boundary intercon-
nection with other subdomains. 

 



 
Figure 6: 1D NURBS of one single patch with C0 continuity over selected knots. 

 
 

 
Figure 7: 1D NURBS of one single patch with C0 continuity over selected knots. 

 

 
Figure 8: 1D NURBS of four discrete patches 

 

2.2.3. Refinement transformation  

As described above the Control Points of the segmented structure are given by h-
refinement of the single-patched domain. The transformation matrix in this 1D case as de-
scribed in [5, 12, and 13] is: 

 { } { }Multipatch MS Singlepatch
( ) ( )

(mxn)(mx3) (nx3)

P T Pξ ξ = ⋅    (12) 

In order to create the inverse transformation, we need to remove the inserted knot values. 
Since they are removable without altering the geometry a matrix is needed that will provide us 
with the inverse transformation. 

 { } { }Singlepatch SM Multipatch
( ) ( )

(nxm)(nx3) (mx3)

P T Pξ ξ = ⋅    (13) 

Using eq.11 and since knot values are removable we have: 
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{ } { }

{ } { }

{ }

Multipatch MS Singlepatch
( ) ( )

(mxn)(mx3) (nx3)

T TMS Multipatch MS MS Singlepatch
( ) ( )

(nxm) (nxm) (mxn)(mx3) (nx3)
(nxn)

TSinglepatch MS MS
( )

(nxm) (mxn)(nx3)

P T P

T P T T P

P T T

ξ ξ

ξ ξ

ξ

 = ⋅ ⇒ 

 
     ⋅ = ⋅ ⋅ ⇒       

 


   = ⋅    


{ }
1

TMS Multipatch
( )

(nxm) (mx3)
(nxn)

T P
−

ξ


 ⋅ ⋅  



  (14) 

 
So the inverse transformation can be created using the initial one by: 

 
1

T TSM MS MS MS

(nxm) (nxm) (mxn) (nxm)
(nxn)

T T T T
−

 
       = ⋅ ⋅         

 
  (15) 

This transformation matrix is one dimensional so it can be applied to each set of Control 
Points on axis Ξ. In case, we want to apply a refinement in more than one axes, a new equiva-
lent transformation matrix for each refined axis must be created and consecutively applied in 
order to create the final Control Net. It is important to note that the null difference of the loads 
is a property that derives from knot insertion in IGA and thus it not an approximation but an 
exact transformation. Specifically, for the Shape Functions we know: 

 

{ } { }Multipatch MS Singlepatch
( , , ) ( , , )

(mxn)(mx1) (nx1)

P T P
T

ξ η ζ ξ η ζ = ⋅    (16) 

The calculation of loads on the multipatch domain is performed by:  
 

 

{ } { } ( ) [ ]

{ } ( ) [ ]

{ } ( ) [ ]
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L R f , , det J d
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L
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Ω

−
ξ η ζ

Ω

−
ξ η ζ

Ω

ξ η ζ Ω =

 T ξ η ζ Ω = 

 T ξ η ζ Ω⇒ 

 = T 

∫

∫

∫

{ }T Single patch

mxn) (n x3)

L −⋅

  (17) 

 
Finally, Fig. 8 shows the influence to the approximation of the new mesh. In case of a new 

Control Point its value is an interpolation of the Control Points closest to the inserted knot 
value and only on the axis knot insertion is performed. On the other hand, when a Control 
Point is not in proximity to an h-refinement its value and position is identical to its previous 
state. Fig.9 and 10 illustrate how NURBS affect the data continuity. For instance, in Fig. 9 
examining the yellow element separation line of axis Ksi, we observe that full continuity al-
lows NURBS to spans smoothly across many elements. On the other hand, when the same 
yellow line is distorted in Fig.10 by raising the multiplicity of the knot value, only one shape 
function now connects different subdomains. In addition, as expected the insertion of a knot 



value resulted to the insertion of a single shape function in axis Ksi. Distortion of the single 
patch mesh only occurred on the subdomain interface while all other Control Points remained 
intact. In case we had a larger degree of shape functions this change would have also affected 
Control Points close to the knot inserted by changing their coordinates and weights. 

 

 
(a) Approximation of a non-existing Control 
Point with the aid of Refinement Transformation. 
We observe that the point’s value is defined with 
the aid of two Control Points. 

(b) Approximation of an existing Control 
Point with the aid of Refinement Transformation. 
We observe that the point’s value is retained to the 
identical Control Point of the previous mesh.  

Figure 8: Domain of influence using Refinement Transformation. 
 

 
Figure 9: Shape functions and continuity of a single patch. 

 
 
 

 
Figure 10: Shape functions and continuity of multiple patched structure. 
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2.2.4. Simple Cantilever Example 

The same cantilever example of 1.2.3 will be used here in order to compare the results of 
the two approaches. 

 
 Unpatched Patched 

( )exactnorm U   0.1283 0.1561 

( )approximatenorm U    0.1284 0.1560 
Error norm 0.23% 0.34% 

Table 3: Performance of transformation on displacements using Refinement Transformation Matrix  

 
 Unpatched Patched 

( )exactnorm F   141.4214 141.4214 

( )approximatenorm F    141.4214 141.4214 
Error norm 0% 0% 

Table 4: Performance of transformation on forces using Refinement Transformation Matrix  

It is clear given the two comparison matrices that the error of the intergrid transformation 
is now minimized. The transformation between the meshes can now complement the IETI so-
lution of the patched model by not inducing error and by approximating the single patch solu-
tion with increased accuracy. Given the data of tables 3 and 4, the refinement transformation 
is considered ideal and will be implemented and tested in the following numerical examples. 

 

3 NUMERICAL EXAMPLES 

Since the comparison of the two proposed transformation methods resulted in advantage of 
the Isogeometric Refinement method, two numerical examples will be provided that will il-
lustrate the performance of the method in real life three dimensional problems. Note that, our 
proposal was tested on the simple cantilever beams that was described above providing satis-
factory results, yet the numerical examples chosen will be of different degrees of freedom 
magnitudes in order to illustrate the wide range of applications for the proposed method. 

3.1.1. Pipe  
The first application of the PCG-IETI method is a pipe and this method is tested on two 

models with 1k and 10k dof respectively. 



 
Figure 11: Patched Pipe with 459 Control Points. 

 
In Figure 11 we can see the patched model counterpart of the pipe model. It is created with 

three dimensional NURBS using NURBS Toolbox [14]. The object is created by 9 Control 
Points per axis ξ that create the circumference of the circle, 3 per axis η that create the radius 
of the annulus and 17 per axis η that give height to the pipe. The degree of NURBS Shape 
functions is considered to be consistent in all parametric directions and equal to 2 for the sake 
of simplicity. The aforementioned Control Points result to (9x3x17)x3=1377 degrees of free-
dom. As depicted in Fig.11, all Control Points at the base are clamped, in order to constrain 
the base displacements. In addition, concentrated loads are applied to Control Points interpo-
latory to the geometry, introducing both a bending and torsional strain to the structure. The 
Pipe is segmented into four equal patches of (9x3x5)x3=405 degrees of freedom for the im-
plementation of the IETI part of the implemented method. This patched Pipe is used to ap-
proximate a single-patched pipe of similar load and boundary conditions. Both geometries are 
depicted in Fig.12. The single patched structure is composed now by 9x3x14 Control Points 
resulting to 1134 degrees of freedom, which are of similar magnitude to the ones of the 
patched structure.  

 

                                                                        
(a)                                                                                                                      (b) 

Figure 12: (a) Pipe designed as a single patch. (b) Pipe designed as four separate patches. 
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In similar fashion, the Pipe structure is analyzed in the case of 10k Dof magnitude. Fig.13 
shows the new geometries as created with NURBS Toolbox both patched and unpatched. 

                                                          
(a)                                                                                                                      (b) 

Figure 13: (a) Pipe designed as a single patch. (b) Pipe designed as ten separate patches. 
 

The new structures are considered now to examine a greater order of magnitude. Specifi-
cally, the single patch Pipe has now 17 Control Points per axis ξ, 3 Control Points per axis η 
and 62 Control Points per axis ζ. This results to (17x3x62)x3=9486 degrees of freedom while 
all other properties, such as degree of Shape Functions, Loads and Boundary Condition are 
retained. The patched structure is now defined by 17x3x71 Control Points resulting to 10863 
degrees of freedom. 

 
 

 Pipe 1K Pipe 10K 
PCG-IETI iterations 10 6 
Total IETI iterations 22 21 
Mean IETI iterations 2.2 3.5 

 
Table 5: Performance metrics of the PCG-IETI method for the two pipe models. 

In table 5, the performance metrics of the PCG-IETI method are presented, considering an 
error tolerance of 10-5. The total iterations are depicted on the first row where it can be seen 
that the 1K model needs more iterations to converge, compared to the 10K one. This is due to 
the fact that the errors introduced from the patched model are larger for the 1K model, com-
pared to the 10K model. Moreover, a mean of 2.2 and 3.5 IETI iterations where needed for 
each PCG-IETI iteration. The error for each iteration is depicted on Fig. 14 
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Figure 14: Iterations vs. error for the two pipe models. 

 

3.1.2. Shell 
 

Second example for the proposed methodology is a Shell once more tested in the same or-
ders of magnitude as the Pipe example. 

 

 
Figure 15: 3D Shell designed with NURBS Toolbox. 

 
The unpatched shell structure is created by using 9 Control Points per axis ξ, 14 per axis η 

and 3 per axis ζ, producing 1134 degrees of freedom. As shown in Fig.15, the all the base 
Control Points are clamped to constrain the base displacements. Loads are once again applied 
to interpolatory Control Points of the Shell as blue arrows illustrates. Four patches are again 
used to approximate the exact solution. Both patched and unpatched geometries are shown in 
Fig.16. Each patch consist of (9x5x3)x3=405 degrees of freedom creating a 1377 Dofs struc-
ture. 
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(a)                                                                                                     (b) 

Figure 16: (a) Shell designed as a single patch. (b) Shell designed as four separate patches. 
 

Finally, two Shells are analyzed for the 10k Dof case. The degrees of freedom are now, 
9486 for the single patch and 10863 for the patched one. Ten patches are used now with 1224 
Control Points each for the IETI part of the method. Fig.17 illustrated these two structures and 
their Control Nets. 
 

                                   
(a)                                                                                                     (b) 

Figure 17: (a) Shell designed as a single patch. (b) Shell designed as ten separate patches. 
 
 
 

 Shell 1K Shell 10K 
PCG-IETI iterations 8 5 
Total IETI iterations 20 20 
Mean IETI iterations 2.2 4 

 
Table 6: Performance metrics of the PCG-IETI method for the two shell models. 

 
In table 6, the performance metrics of the PCG-IETI method are presented, considering an 

error tolerance of 10-5. The total iterations are depicted on the first row where it can be seen 
that the 1K model needs more iterations to converge, compared to the 10K one as for the case 
of the pipes. Once again, this is due to the fact that the errors introduced from the patched 
model are larger for the 1K model, compared to the 10K model. Moreover, a mean of 2.2 and 
4 IETI iterations were needed for each PCG-IETI iteration. The error for each iteration is de-
picted on Fig. 18 
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Figure 18: Iterations vs. error for the two pipe models. 

 

REFERENCES  
[1] M. Hestenes, E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems. 

Journal of Research of the National Bureau of Standards 49, 1952. 

[2] Y. Saad, Iterative methods for sparse linear systems (2nd Ed.). Philadelphia, Society for 
Industrial and Applied Mathematics, 2003 

[3] Axelsson, Owe, Iterative Solution Methods, Cambridge University Press, 1996 

[4] Y. Saad, H. van der Vorst, Iterative solution of linear systems in the 20th century, §8 
Preconditioning methods, pp 193–8 of Numerical Analysis: Historical Developments in 
the 20th Century, Elsevier Science Publishers, 2001. 

[5] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD finite elements 
NURBS exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg. 
194 (2005) 4135–4195 

[6] N. Collier, D. Pardo, L. Dalcin, M. Paszynski, V.M. Calo, The cost of continuity: A 
study of the performance of isogeometric finite elements using direct solvers, Comput. 
Methods Appl. Mech. Engrg, 2011 

[7] N. Collier, L. Dalcin, D. Pardo, V.M. Calo, The cost of continuity: Performance of Iter-
ative Solvers on Isogeometric Finite Elements, Society for Industrial and Applied Math-
ematics, 2013 

[8] Stefan K. Kleiss, C. Pechstein, B. Jüttler, S. Tomar, IETI – Isogeometric Tearing and 
Interconnecting, Comput. Methods Appl. Mech. Engrg, 2012 

[9] Rhino, CAD Modeling and Design Toolkit. < www.rhino3d.com >  

[10] Y. Zhu; A. C. Cangellaris, Multigrid finite element methods for electromagnetic field 
modeling, Wiley, 2006. 

[11] W. L. Briggs, Van Emden Henson, S. F. McCormick, A Multigrid Tutorial, SIAM, 2000 



George Stavroulakis, Dimitris Tsapetis and Manolis Papadrakakis 

[12] J. A. Cottrell, T. J. R Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration 
of CAD and FEA, Wiley, 2009 

[13] L. A. Piegl, W. Tiller, The NURBS Book, Springer, 1997 

[14] D.M.Spink, NURBS Toolbox 

[15] M. Papadrakakis, Solving large-scale linear problems in solid and structural mechanics, 
in: M. Papadrakakis (Ed.), Solving Large-Scale Problems in Mechanics, John Wiley & 
Sons, Chichester, 1993, pp. 1–37. 

 


	Domain decomposition solution schemes for large-scale IGA problems
	1 Solution techniques
	1.1 Large – scale problems in IGA
	1.2 The PCG-IETI method

	2 Mapping
	2.1 Shape Functions Mapping
	2.1.1. B-Splines
	Given a degree   of the shape functions and an ascending sequence  of n+p+1 real values called Knot Vector, where n is the number of Control Points the B-Splines can be calculated using the recursive Cox-de Boor algorithm. Note that we only use open K...
	2.1.2. NURBS
	2.1.3. Cook Cantilever Example
	In order to illustrate the performance of the NURBS Shape Function transformation, a cook cantilever was examined. The transformation had to transfer the information from the single-patch cantilever with 11x3 Control Points to a Cantilever subdivided ...
	2.2 Isogeometric Refinement Mapping
	2.2.1. h-Refinement
	The refinement algorithm that will be used in the aforementioned transformation is h-refinement or knot insertion. For a known knot value vector Ξ={ξ1, ξ2,…,ξn+p+1} we want to introduce new knot values on increase the multiplicity of already known one...
	Where
	2.2.2. Multiple patches segmentation
	2.2.3. Refinement transformation
	As described above the Control Points of the segmented structure are given by h-refinement of the single-patched domain. The transformation matrix in this 1D case as described in [5, 12, and 13] is:
	2.2.4. Simple Cantilever Example
	The same cantilever example of 1.2.3 will be used here in order to compare the results of the two approaches.

	3 Numerical examples
	Since the comparison of the two proposed transformation methods resulted in advantage of the Isogeometric Refinement method, two numerical examples will be provided that will illustrate the performance of the method in real life three dimensional prob...
	3.1.1. Pipe
	3.1.2. Shell


