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Abstract. This paper presents the implementation of a non-reflecting boundary condition for
steady and unsteady turbomachinery flow computations. Here, the truncation of the computa-
tional domain can lead to spurious numerical reflections due to artificial open boundary sur-
faces. To face this issue, Giles introduces a popular set of non-reflecting boundary conditions
for turbomachinery applications. Whereas the steady formulation is exact within the lineari-
sation approach, Giles suggests an approximate boundary condition for unsteady simulations.
Resulting from this approximation, the unsteady boundary conditions are not perfectly non-
reflecting. Thus, steady and time averaged unsteady flow solutions do not necessarily coincide,
even if the flow field contains no unsteadiness.

We suggest a single boundary condition formulation suitable for steady and unsteady sim-
ulations. This approach applies a modal decomposition and, thus, undesired incoming modes
can easily be ruled out. Steady modes can be handled as in the steady case. Apart from the
assumptions made by starting from the linearised, two-dimensional Euler equations, this ap-
proach does not require any further approximation, and, therefore, the time-averaged unsteady
and the steady solutions coincide in the limit of steady flows.

We apply and assess the presented boundary condition in steady and unsteady computations
of two turbomachinery test cases.
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1 INTRODUCTION

Computational fluid dynamics (CFD) based upon the Reynolds-averaged Navier-Stokes equa-
tions (RANS) has become a vital tool for both design of and research on turbomachinery ap-
plications in the aerospace, energy and automotive industries. Steady computations remain the
backbone of industrial design processes especially due to their extensive utilization in shape
optimization methods. Unsteady turbomachinery flow simulations, on the other hand, attain
increasing importance for understanding blade row interactions which is needed to achieve
higher aerodynamic loads and closer blade row spacings to meet the desire for more efficient
and lighter engines. Moreover, these design trends require additional activities in fluid dynamics
related disciplines like aeroelasticity and aeroacoustics, which again heavily rely on unsteady
CFD [1, 2].

The quality of flow simulations depends, beside the choice of an appropriate closure model
for the RANS equations and the properties of the numerical scheme, directly on the boundary
conditions imposed. Straightforward far-field or simple 1D characteristic boundary conditions
can lead to spurious, numerical reflections deteriorating the flow solution inside. Thus, many
aerodynamic problems, such as the flow around an airfoil or wing, are commonly simulated in
very large computational domains to minimise the impact of the far-field boundary conditions
on the region of interest.

In turbomachinery flows, however, this is usually not possible. Firstly, instead of the whole
machine, only single components or certain sets of stages or blade rows are considered which
leads to artificial, open boundaries rather close to the blades. Additionally in steady turboma-
chinery CFD, adjacent blade rows in their respective relative frames of reference are coupled
via so-called mixing planes [3]. These mixing planes pose boundary conditions to the adja-
cent domains which strengthens the need for non-reflecting boundary conditions (NRBC) in
turbomachinery applications.

Numerical reflections, that emerge when applying less advanced boundary conditions, can
disturb the flow field in the neighbourhood of a blade leading to an incorrect surface pressure
distribution and hence aerodynamic work or losses. We will give an example for this later in the
application section. In particular, reflecting boundary conditions can deteriorate the prediction
of aeroelastic or aeroacoustic phenomena as shown by Kersken et al. [4] and Ashcroft and
Schulz [5].

The mathematical theory of non-reflecting boundary conditions is presented in a review pa-
per by Hidgon [6]. Based upon this theory, Giles introduces a set of NRBC for 2D turboma-
chinery flows [7, 8]. Giles’ approach assumes wavelike perturbations around an average flow
state. Thus, the linearised Euler equations are considered neglecting viscous effects. Trans-
forming these perturbations into the spectral, i.e. time and wavenumber, domain and exploiting
an eigenvector analysis, one obtains a set of modal perturbations and their respective direction
of propagation. This decomposition enables the definition of a flow state at the boundaries
that does not induce undesired incoming perturbations. The straightforward implementation
of these NRBC requires the frequencies and wave numbers of all perturbations at the bound-
ary to be known. Due to the Fourier transform applied here, these boundary conditions are
non-local in time and space. Therefore, Giles suggests an approximate boundary condition for
unsteady computations derived from theoretical work of Engquist and Majda [9]. This boundary
condition is derived from a Taylor series expansion about the ideal one-dimensional boundary
condition and, thus, is local in time and space apart from the fact that it requires averaged quan-
tities. A more detailed description of the implementation of these boundary conditions is given
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in [10]. Saxer and Giles present an extension of the non-local, steady NRBC to 3D flows [11].
However, resulting from the approximation, Giles states the unsteady boundary conditions

may produce significant unphysical reflections for outgoing modes with large circumferential
wavenumbers [8]. Accordingly, steady solutions obtained utilizing the exact steady NRBC and
time averaged unsteady flow solutions may differ even for naturally steady flows. Hagstrom
proposes a higher order approach for the approximation of unsteady NRBC [12]. This method
is local in time but employs a Fourier transform in space. Henninger et al. [13] apply it to
acoustic and aeroelastic turbomachinery test cases and demonstrate improved non-reflecting
properties compared to Giles’ boundary condition.

To overcome the inconsistency of steady and unsteady NRBC and ensure their comparability
in steady and time-accurate turbomachinery flow simulations, the authors propose a boundary
condition formulation suitable for both. This approach applies a modal decomposition in time
and circumferential direction. Thus, the zeroth harmonic in time can be handled by a steady
boundary condition. Disturbances of higher harmonics are treated independently. Accordingly,
undesired incoming modes can easily be ruled out. Apart from the assumptions made by starting
from the linearised, two-dimensional Euler equations, this approach does not require any further
approximation, and, therefore, the time-averaged unsteady and the steady solution coincide in
the limit of steady flows.

In this paper, we firstly outline the theory behind NRBC and the approximation made by
Giles. Subsequently, we present the implementation of an exact method and apply it to steady
and unsteady turbomachinery computations. In order to validate our implementation of this
boundary condition in DLR’s 3D RANS solver for internal and turbomachinery flows, TRACE,
we give a comparison to characteristic and 2D non-reflecting steady boundary conditions and
approximate unsteady 2D NRBC. Thereby, the favourable behaviour of the exact method is
demonstrated.

2 NON-REFLECTING BOUNDARY CONDITIONS

Before presenting our implementation of an exact boundary condition, we want to give a
brief overview of one way to construct non-reflecting boundary conditions in the context of tur-
bomachinery CFD as they are implemented in TRACE. A more elaborate description including
the mathematical derivation and well-posedness analysis is given in Giles’ technical report [7]
and implementation details can be found in his UNSFLO report [10].

2.1 General approach

For many turbomachinery flows we can assume that variations in pitchwise direction pre-
dominate variations in spanwise direction [11]. Thus, we can adapt Giles’ originally two-
dimensional formulation for three-dimensional flows as a reasonable approximation. Here, the
original technique is applied in blade-to-blade planes, i.e. the coupling of planes of constant
relative channel height is neglected.

Let q = (%, u, v, w, p) be the vector of primitive variables with density %, pressure p and ve-
locity components u,v and w aligned such that u is normal to the boundary but in flow direction
whilst v and w point along the boundary in pitchwise and spanwise direction, respectively. For
the construction of non-reflecting boundary conditions we further consider sufficiently small
perturbations around a mean flow state. So we can linearised the three-dimensional Euler equa-
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tions in primitive form neglecting changes in spanwise direction:

∂q

∂t
+ A

∂q

∂x
+B

∂q

∂y
= 0 (1)

with

A =


u % 0 0 0
0 u 0 0 1/%
0 0 u 0 0
0 0 0 u 0
0 γp 0 0 u

 and B =


v 0 % 0 0
0 v 0 0 0
0 0 v 0 1/%
0 0 0 v 0
0 0 γp 0 v

 (2)

Overlined variables denote mean flow conditions and γ represents the ideal gas heat capacity
ratio. In the following, we only consider wave-like perturbations of the form

q = Re
(
q̂ ei(kx+my−ωt)) (3)

where x is again normal to the boundary in flow direction and y is aligned with the boundary in
pitchwise direction. Note that the latter is the circumferential direction in rotational turboma-
chinery flows. Then k and m denote wave numbers along x and y, respectively, with angular
frequency ω. Though this approach seems rather restrictive, we can in fact assemble any flow
state by superposition of these fundamental perturbations within the linearised theory. Substi-
tuting (3) into equation (1), we obtain:

(−ωI + kA+mB) q̂ = 0 (4)

With nontrivial solution q̂, this yields the dispersion relation

det (−ωI + kA+mB) = 0 (5)
or rearranged

det
(
−ωA−1 + kI +mA−1B

)
= 0. (6)

Assuming we know ω and m, equation (6) can be interpreted as a characteristic polynomial to
the eigenvalue problem (

−ωA−1 +mA−1B
)
r = −kr (7)

with eigenvalues −k and right eigenvectors r. The 3D linearised Euler equations yield a char-
acteristic polynomial of degree five. Accordingly, there are five eigenvalues−ki regarding their
possible multiplicity. Analogously, we introduce a set of left eigenvectors li satisfying

li
(
−ωA−1 +mA−1B

)
= −kili. (8)

Note that the left eigenvectors are row vectors whereas the right eigenvectors are column vec-
tors.

In order to derive non-reflecting boundary conditions from these mathematical considera-
tions, it is helpful to clarify the physical interpretation of the left and right eigenvectors. As
mentioned earlier, we can decompose any solution q into a sum of single Fourier modes q̂, each
with distinct values of ω and m. Each of these modes is again a set of five fundamental waves
with same ω and m but (possibly) different k. Since the wave numbers normal to the boundary,
ki, are the negative eigenvalues of (−ωA−1 +mA−1B), they allow us to distinguish whether
the corresponding waves propagate into or out of the computational domain.
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The change in primitive variables induced by such a wave is expressed by the respective right
eigenvector ri. In other words, the right eigenvectors form a set of linearly independent basis
vectors and every perturbation from a mean state can be decomposed into a linear combination
of right eigenvectors with weights αi :

q = Re

([
5∑
i=1

αirie
ikix

]
ei(my−ωt)

)
(9)

For different eigenvalues ki 6= kj , each left eigenvector li is orthogonal to rj , i.e. lirj = 0.
For eigenvalues of multiplicity larger than one, the corresponding eigenvectors can be con-
structed such that lirj = 0 for i 6= j. Because of this perpendicularity relation, the left eigen-
vectors help us to determine the share of their corresponding right eigenvector in any arbitrary
perturbation, i.e. αi = liq̂. So the pivotal idea for the construction of non-reflecting boundary
conditions is to decompose the flow state at a boundary and rule out the incoming waves. This
can be done by requiring for any combination of ω and m

liq̂ = 0 (10)

for each li belonging to an incoming wave .
Applying the above to the three-dimensional linearised Euler equations, we obtain the fol-

lowing wave numbers:

k1,2,3 =
ω −mv

u
(11)

k4 =
(ω −mv) (aΨ− u)

a2 − u2 (12)

k5 = −(ω −mv) (aΨ + u)

a2 − u2 (13)

with speed of sound a and

Ψ =

{√
∆ if ∆ > 0,

−i sign (ω −mv)
√
−∆ if ∆ < 0

(14)

and

∆ = 1− (a2 − u2)m2

(ω −mv)2
. (15)

The wave numbers k1,2,3 are real and the group velocity normal to the boundary ∂ω
∂k

= u is
positive. Thus, the respective perturbations r1,2,3 propagate convectively in flow direction. They
are incoming waves at an inflow boundary and outgoing ones at an outflow. The calculation
of k4 and k5 requires the distinction of two cases. If ∆ > 0 then Ψ is real. For flows that
are subsonic normal to the boundary it can be shown that one wave is incoming and one is
outgoing. Taking the positive branch of the root yields the wave corresponding to k4 also
propagates in flow direction whereas the other one travels in the opposite direction. If ∆ <
0, Ψ becomes complex. We choose the sign of Ψ such that Im(k4) is real and, according to
equation (3), the corresponding wave propagates downstream, which is consistent with the case
∆ > 0. The wave associated with k5 then again travels upstream. In the particular case of
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∆ = 0, acoustic resonance occurs, which involves additional challenges for the construction of
boundary conditions [4, 14]. But this case is not considered in the present work.

For flows that are supersonic normal to the boundary, there is no upstream running wave.
Yet, there are only very few axially supersonic turbomachinery applications and, secondly, su-
personic inflow and outflow boundary conditions are rather straightforward and can be found in
many textbooks on CFD (e.g. [15]). Hence, this paper does not consider boundary conditions
for normally supersonic flows.

To write down the eigenvectors and formulate boundary conditions based upon them, it is
convenient to define

λ =
m

ω
. (16)

The matrix of right eigenvectors R = (r1 r2 r3 r4 r5) is defined by:

R (λ) =


−% 0 0 %(1−(1−vλ)MaxΨ)

2(1−Max)
%(1+(1−vλ)MaxΨ)

2(1+Max)

0 a uλ 0 a(1−vλ)(Ψ−Max)
2(1−Max)

−a(1−vλ)(Ψ+Max)
2(1+Max)

0 a (1− vλ) 0
a2(1−Ma2x)λ

2(1−Max)

a2(1−Ma2x)λ
2(1+Max)

0 0 a 0 0

0 0 0 % a2(1−(1−vλ)MaxΨ)
2(1−Max)

% a2(1+(1−vλ)MaxΨ)
2(1+Max)

 (17)

with Max denoting the boundary normal Mach number. From this, the significance of each
right eigenvalue becomes apparent. As r1 only affects the density, it constitutes an entropy
perturbation. The second and third eigenvectors represent vorticity disturbances in the blade-
to-blade plane and in spanwise direction, respectively. Since ω−mv

u
is a triple eigenvalue of the

dispersion relation (6), the determination of r1, r2 and r3 is not unique. However, choosing
them this way yields a physically vivid set of eigenvectors and their required orthogonality
is evident at once. The two remaining eigenvectors correspond to upstream and downstream
running acoustic perturbations, i.e. isentropic, irrotational pressure waves.

The left eigenvector matrix can be derived likewise. Another possibility to obtain the left
eigenvector matrix is to invert the right eigenvector matrix:

L =


l1
l2
l3
l4
l5

 = R−1 =


−1
%

0 0 0 1
% a2

0 −uλ
a

1−vλ
a

0 −λ
% a

0 0 0 1
a

0

0 1−vλ
a

uλ
a

0 (1−vλ)Ψ

% a2

0 −1−vλ
a

−uλ
a

0 (1−vλ)Ψ

% a2

 (18)

Due to the fact that there is one outgoing wave at an inflow and four outgoing waves at an
outflow, we need to extrapolate outgoing perturbations from the interior. To do so, we define
characteristic variables c = (c1 c2 c3 c4 c5)T such that these characteristics coincide with the
weights αi in equation (9) for plane waves running perpendicularly to the boundary. Note this
is the case if m = 0 or equivalently λ = 0. Hence, the forward and backward transformations
are given by

c = L1d q (19)
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with

L1d = L(0) =


−1
%

0 0 0 1
% a2

0 0 1
a

0 0
0 0 0 1

a
0

0 1
a

0 0 1
% a2

0 − 1
a

0 0 1
% a2

 (20)

and
q = R1d c (21)

with

R1d = R(0) =


−% 0 0 %

2
%
2

0 0 0 a
2
−a

2

0 a 0 0 0
0 0 a 0 0

0 0 0 % a2

2
% a2

2

 . (22)

2.2 Steady boundary conditions

The boundary condition generally consists of two steps, i.e. mean flow conditions and cir-
cumferential perturbations are treated separately. As changes in the mean flow represent plane
waves at the boundary, we can directly express them by changes in the 1D characteristics. In the
following, we write down inflow and outflow boundary conditions by means of characteristics
in a compact form, so equations for in- and outflow boundaries are only given separately where
necessary. For this purpose, we separate the left and right eigenvector matrices and their cor-
responding characteristics depending on the direction of propagation of their associated waves.
In normally subsonic flows, the first four waves propagate downstream and the fifth one runs
upstream. Accordingly, we write for an inflowLin

Lout

 =


l1
l2
l3
l4
l5

 (23)

 cin

cout

 =


c1

c2

c3

c4

c5

 (24)

(
Rin Rout

)
=

(
r1 r2 r3 r4 r5

)
(25)
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and for an outflow Lout
Lin

 =


l1
l2
l3
l4
l5

 (26)

cout
cin

 =


c1

c2

c3

c4

c5

 (27)

(
Rout Rin

)
=

(
r1 r2 r3 r4 r5

)
. (28)

To meet the boundary values specified by the user, we define a residual vector for both inflow
and outflow boundaries

Rbd =




p(s− sbd)

% a (v − u tan(αcirc,bd))

% a (w − u tan(αrad,bd))

%(ht − ht,bd)

 for inflow boundaries

(
p− pbd

)
for outflow boundaries

(29)

Here, the subscript bd denotes user specified boundary values. Since for turbomachinery flows,
the user commonly specifies stagnation pressure and stagnation temperature at an inflow bound-
ary, the associated specific entropy s and specific stagnation enthalpy ht need to be calculated
from the former. The angles αcirc and αrad represent the angles between the velocity vector and
the boundary normal in pitchwise and spanwise direction. Mixing planes can be covered by
defining analogously

Rbd = Lin1d δqmp (30)

with δqmp being the difference between the flow states at each side of the mixing plane in the
same frame of reference.

To meet the boundary values specified by the user or mixing plane, the required change of
characteristics is obtained via a Newton-Raphson step:

Rbd +
∂R

∂q

∂q

∂cin
δcin = 0 (31)

Note that ∂q
∂cin

is the backward transformation of the incoming characteristics, Rin
1d. The deriva-

tion of the residual Jacobian ∂R
∂q

can be found in [10]. For the adaption of Giles’ original
boundary condition to a cell-centred solver, where the boundary condition is applied between
two pseudo-time updates, we also need to modify the update of the mean charactersistics at the
faces due the pseudo-time change of the outgoing characteristics in the interior [16]. We define
another residual

Ri = Lout1d (qf − qi) (32)
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where subscripts i and f denote inner cell values and face values, respectively. Note that the
inner values have already been updated by the pseudo-time solver whereas face values are still
about to be updated by the boundary condition. Finally, the update of mean characteristics reads

δc = −L1d

[
Rin

1d

(
∂R

∂q
Rin

1d

)−1

Rbd +Rout
1d Ri

]
(33)

To apply the actual non-reflecting boundary condition, we perform a Fourier decomposition
of the disturbances about the mean flow along the boundary in the pitchwise direction. The
spatial transformation for any quantity φ reads

φ̂i =
1

P

∫ P

0

φ̃ e−imi y dy. (34)

with wave numbers mi = 2πi+θ
P
6= 0, pitch P , inter-blade phase angle θ and local deviation

from the average state φ̃ = φ − φ. Note that θ vanishes in steady computations. Accordingly,
the backward transformation is given by

φ̃ = Re

(
∞∑

i=−∞

φ̂i e
imi y

)
. (35)

In order to attain non-reflecting properties at the boundary, equation (10) must be satisfied for
every mode with mi 6= 0 and ω = 0. We can scale the second to fifth left eigenvectors by ω and
then set ω to zero. Consequently, the left eigenvector matrix for steady boundary conditions
reduces to

Ls =


−1
%

0 0 0 1
% a2

0 − u
a2
− v
a2

0 −1
% a2

0 0 0 1
a

0

0 − v
a2

u
a2

0 β
% a3

0 v
a2

− u
a2

0 β
% a3

 (36)

with

β =

{
i sign(m)

√
a2 − (u2 + v2) for u2 + v2 < a,

−sign(v)
√

(u2 + v2)− a for u2 + v2 > a.
(37)

We can express the actual boundary condition, equation (10), in terms of characteristics which
is helpful to write the overall boundary update as a sum of mean characteristic changes and
local changes. Note that the outgoing characteristics have to be extrapolated from the interior.

Lins q̂ = Lins
(
Rin

1d L
in
1d q̂f +Rout

1d L
out
1d q̂i

)
= Lins

(
Rin

1d ĉ
in
f +Rout

1d ĉ
out
i

)
= 0 (38)

The above equation yields ideal values for the incoming characteristics as a function of the
outgoing ones. To meet the ideal values, the required changes in the characteristic at an inflow
boundary is given by 

δĉ1

δĉ2

δĉ3

δĉ4

δĉ5

=


−ĉf,1

−β+v
a+u

ĉi,5 − ĉi,2
−ĉf,3(

β+v
a+u

)2
ĉi,5 − ĉf,4

ĉi,5 − ĉf,5

 . (39)
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Daniel Schlüß, Christian Frey, Graham Ashcroft

Accordingly, the outflow boundary condition reads
δĉ1

δĉ2

δĉ3

δĉ4

δĉ5

 =


ĉi,1 − ĉf,1
ĉi,2 − ĉf,2
ĉi,3 − ĉf,3
ĉi,4 − ĉf,4

2u
β−v ĉi,2 −

β+v
β−v ĉi,4 − ĉf,5

 . (40)

Subsequently, these characteristic changes can be transformed from the wavenumber domain
back into the physical domain according to equation (35) yielding a local change of the charac-
teristics δc̃.

For supersonic (u2+v2 > a2), but normally subsonic (u < a) flows, β andLs are independent
of m according to equations (36) and (37). Hence, no Fourier transformation is required and
equations (39) and (40) can be applied directly at each face substituting any ĉ by c̃. Note that
the steady, supersonic boundary conditions become local boundary conditions in this case apart
from their dependence on averaged quantities.

Prescribing no incoming perturbations means that entropy and enthalpy are uniform along
the inflow boundary only within the linearised theory, but second-order perturbations may still
occur. Thus, we replace the condition for δc̃1 and δc̃4 in the physical domain and instead enforce
uniform entropy and enthalpy by locally driving the following residual(

R̃1

R̃2

)
=

(
p s̃

%h̃t

)
(41)

to zero. This can be done by means of a Newton-Raphson step(
R̃1

R̃2

)
+

(
γR
γ−1

p 0 0
γ
γ−1

p % a v %
2

(a2 + a u)

)δc̃1

δc̃2

δc̃4

 = 0 (42)

where R denotes the specific gas constant. The resulting condition for the update of c̃1 and c̃4

reads (
δc̃1

δc̃4

)
=

(
−γ−1

γR
s̃

−2
a(a+u)

(
h̃t + s̃

γR
a2 + a v δc̃2

)) . (43)

We further have to determine the integral change of characteristics due to circumferential
perturbations because the mean flow boundary conditions already ensure that averaged flow
quantities match the boundary values specified by the user or the mixing plane. Accordingly,
we have to subtract the integral change afterwards in order to guarantee the mean change of
characteristics is not affected by the treatment of perturbations. For this purpose we introduce

δc̃ =
1

P

∫ P

0

δc̃ dy. (44)

Finally, the overall update of a boundary face can be written as

δq =
[
σRin

1d

(
δcin + δc̃in − δc̃in

)
+Rout

1d

(
δcout + δc̃out − δc̃out

)]
. (45)

The relaxation factor σ, which needs to be chosen suitably in the range of 0 to 1, is necessary to
retain the well-posedness of the mathematical problem [7]. For the application in a cell-centred
solver, the updated face values have to be extrapolated appropriately to the ghost cells.
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2.3 Approximate unsteady boundary conditions

To overcome the disadvantage of the straightforward, exact unsteady NRBC being spatially
and temporally non-local, Giles proposes an approximate, local unsteady boundary condition
[7]. This approach has been introduced by Engquist and Majda for general wave equations [9],
but Giles applied it to two-dimensional linearised Euler equations in general and turbomachin-
ery flows in particular.

As in steady boundary conditions, the averaged flow field and perturbations are handled
separately. The mean flow boundary condition is identical to the steady mean flow boundary
condition except that averaged quantities in the residual (29) are additionally averaged in time
rather than only circumferentially. Unsteady turbomachinery flows are (within the framework of
RANS) considered to be periodic and, therefore, temporal averaging means averaging a quantity
over one period in this context.

The actual approximate boundary condition, however, handles perturbations from the mean
state. The condition for a (hypothetically) perfectly non-reflecting boundary treatment has been
discussed in section 2.1. But the universal application of equations (10) and (18) requires the
decomposition of the boundary flow field into the Fourier domain. To avoid this costly trans-
formation, the central concept is to express the exact unsteady boundary condition by use of
a Taylor series expansion about the one-dimensional characteristic boundary condition. Recall
from equation (16) that λ → 0 and from equations (15) and (14) that Ψ → 1 in the one-
dimensional case due to vanishing circumferential wave numbers m. Then, the second order
approximation of the left eigenvector matrix L reads

La = L|λ=0 + λ
∂L

∂λ

∣∣∣∣
λ=0

= L1d +
m

ω

∂L

∂λ

∣∣∣∣
λ=0

. (46)

Now the boundary condition Lina q̃ = 0 can be rearranged starting with multiplying by ω. Com-
paring equations (1) and (4), we can infer that we can replace ω by i ∂

∂t
and m by −i ∂

∂y
yielding

Lin1d
∂q̃

∂t
− ∂Lin

∂λ

∣∣∣∣
λ=0

∂q̃

∂y
= 0. (47)

Giles’ shows his original formulation may become ill-posed at inflows [7]. To face this ill-
posedness, he proposes a modification by giving up the perfect orthogonality of l4 and r5 and
thereby the condition for perfect non-reflecting behaviour. A multiple of (λ l2,1d) is added to
la,4 such that la,4 r5 is minimized under the constraint of the inflow boundary condition being
well-posed. Expressing q̃ in terms of characteristics, we can again extrapolate the outgoing
characteristic c̃5 from the interior and obtain the following inflow boundary condition

∂

∂t

c̃1

c̃2

c̃4

+

v 0 0
0 v 1

2
(a+ u)

0 1
2

(a− u) v

 ∂

∂y

c̃1

c̃2

c̃4

+

 0
1
2

(a− u)
0

 ∂c̃5

∂y
= 0. (48)

The outflow boundary condition is already well-posed in its original formulation and, thus,
remains unchanged. It reads

∂c̃5

∂t
+ v

∂c̃5

∂t
+
(
0 1

2
(a+ u) 0

) ∂
∂y

c̃1

c̃2

c̃4

 = 0. (49)
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As the characteristic c3, representing vorticity perturbations in spanwise direction, is decoupled
in this quasi-three-dimensional approach, this characteristic is treated as a convective perturba-
tion and, hence, extrapolated appropriately.

The appropriate numerical method to solve these differential equations at the boundaries
depends on the solution methods for the flow equations in the interior. The solution algorithm
applied in TRACE is presented in [5]. The primitive variables at the boundary and in the ghost
cells are reconstructed from the change of characteristics in the same manner as in the steady
boundary conditions.

Due to the chosen approach, to express the left eigenvector matrix by a Taylor series expan-
sion of order two in λ, this boundary is only perfectly non-reflecting for planar waves impinging
normally upon the boundary. In general, the boundary conditions become more reflecting with
increasing λ. Accordingly, flows with large circumferential wave numbers and flows that are
dominated by low frequency perturbations can induce spurious reflections at the boundary. The
non-reflecting properties of the inflow boundary condition are further diminished by the mod-
ification to gain well-posedness. Details on reflections coefficients can be found in [7] and
applications to two-dimensional pressure-waves in uniform mean flow assessing the reflection
properties are presented in [17].

A first order approximation of these boundary conditions is also implemented in TRACE. In
the application section of this paper, both boundary conditions are applied and compared to the
exact approach. Note that the first order approximation can also be regarded as a characteristic,
one-dimensional boundary condition.

2.4 Exact NRBC

It can be difficult to distinguish between the impact of approximate, unsteady boundary con-
ditions and actual unsteady effects when comparing unsteady and steady flow simulations. The
authors rank direct comparability of steady and unsteady computations as highly desirable in
order to asses unsteady flow phenomena in turbomachinery design and research. Therefore,
we do not consider Fourier transforms in time and space to be necessarily circumvented due
to their computational effort. The fundamental concept of the exact boundary conditions is
applying condition (10) to any incoming mode of the spatially and temporally decomposed
boundary flow field. For this purpose, we first determine the temporal Fourier decomposition
at the boundary according to the approach He proposed in the context of his phase lag method
[18]. For the implementation in TRACE, the reader is referred to [19]. The choice of considered
harmonics is analogous to the phase lag set of harmonics. From here on, we distinguish tem-
porally Fourier transformed quantities, denoted by subscript ω, and circumferentially Fourier
transformed quantities, denoted by subscript m. For simplicity, this has been omitted up to
this point. The temporal Fourier coefficients q̂ω are again expressed in terms of characteristic
variables ĉω = L1dq̂ω. For each frequency in the Fourier domain, the flow can also be Fourier
transformed along the boundary according to equation (34) and the respective outgoing charac-
teristics are again extrapolated from the interior characteristics ĉout(ω,m),i . The exact non-reflecting
boundary condition for every mode, i.e. for every combination of ω and m, reads

Linq̂(ω,m),f = Lin
(
Rin

1d ĉ
in
(ω,m),target +Rout

1d ĉ
out
(ω,m),i

)
= 0. (50)

L no longer needs to be approximated because ω andm are known in this context. The condition
for updating the incoming modal characteristics is

δĉin(ω,m) =
[
−
(
LinRin

1d

)−1
LinRout

1d ĉ(ω,m),i

]
− ĉin(ω,m),f . (51)
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The outgoing characteristic is modified according to

δĉout(ω,m) = ĉout(ω,m),i − ĉout(ω,m),f (52)

The mean flow q̂0,0 is treated in the same manner as in the steady or approximate unsteady
boundary condition according to equation (33).

Transforming δĉ(ω,m) back into the physical domain, we obtain face-wise, harmonic charac-
teristics δĉω(y). The change of primitive variables at each face is relaxed again:

δq̂ω = σR1dδĉω (53)

Subsequently, the boundary states can be extrapolated to the ghost cells in the frequency do-
main. Finally, the current ghost cell state is reconstructed by means of an approximate, inverse
Fourier transform, again exploiting the phase lag functionality in TRACE [19].

Due to its universal approach, this boundary condition is suitable and consistent for both
steady and unsteady simulations. Beyond, this approach is perfectly consistent with the non-
reflecting boundary condition for frequency domain methods, presented by Frey [20, 21], which
is rather favourable to compare unsteady time-domain computations and frequency domain
computations. Chassaing and Gerolymos [17] demonstrate the advantageous reflection prop-
erties towards Giles’ approximate boundary conditions for certain acoustic waves in uniform
mean flow. Yet, they observe considerably slower convergence. This is considered by the au-
thors of this paper to be due to the issue of temporal Fourier coefficients evolving rather slowly
over possibly many periods, which is a known handicap of the phase lag approach.

3 APPLICATION

To validate our implementation of the exact boundary conditions and asses their non-reflecting
properties, we show their application to two turbomachinery test cases. The behaviour of the
exact NRBC is compared to steady NRBC, first and second order approximate NRBC and sim-
ple, one-dimensional, steady Riemann boundary conditions. For the description of Riemann
boundary conditions, the reader is referred to [15].

When discussing boundary conditions for turbomachinery flows, the appropriate definition
of a mean state is not trivial. This issue has been excluded from the theory section to stick to the
actual subject of non-reflecting boundary conditions. In the following applications, however,
all mean flow states are obtained by flux averaging [10] along the pitch and additionally in time
for unsteady flows.

All computations are performed on structured grids using DLR’s finite-volume 3D RANS
solver TRACE [22, 23] applying Roe’s upwind scheme [24] extended to second order accu-
racy through van Leer’s MUSCL extrapolation [25] and an appropriate limiter function for
convective fluxes. Viscous fluxes are computed based on gradients obtained by a central finite
difference scheme in combination with Wilcox’s linear eddy viscosity turbulence model [26].
For steady simulations a first order implicit pseudo-time marching technique is employed. The
same pseudo-time method is used for subiterations of single time steps in unsteady computa-
tions.

3.1 VKI LS89

The first test case is a two-dimensional, linear turbine cascade designed and investigated at
the von Karman Institute for Fluid Dynamics. The airfoil is typical of high pressure turbine
nozzle guide vanes. A detailed description can be found in [27].
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(a) exact NRBC
steady computation

(b) steady NRBC
steady computation

(c) 1D Riemann
steady computation

(d) exact NRBC
unsteady computation

(e) 2nd order approx. BC
unsteady computation

(f) exact NRBC
steady computation
long domain

(g) steady NRBC
steady computation
long domain

Figure 1: Pseudo-Schlieren images obtained by plotting density gradient magnitude (black corresponds to large
gradients)

All calculations are carried out for a supercritical operating point with 415 K stagnation
temperature and 147500 Pa stagnation pressure at the inlet and 78000 Pa static pressure at the
outlet. The inflow is purely axial. Steady computations are conducted applying one-dimensional
Riemann boundary conditions, steady NRBC and exact NRBC.

Unsteady computations apply the second order approximate boundary conditions and the
exact NRBC. The base frequency is set to 6100 Hz. The underlying assumption is that a down-
stream rotor blade with the same pitch faces purely axial flow in its relative frame of reference
at this blade passing frequency. Therefore, this frequency is estimated to have a realistic or-
der of magnitude for turbomachinery flows. One period is resolved by 64 time steps using a
second order Euler backward scheme. For every physical time step, 25 pseudo-time iterations
are performed. Though we perform unsteady computations, both solutions converge to a steady
state.

Inlet and outlet planes are located at 50 % axial chord length away from the leading and
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training edge. The computational grid comprises 21016 cells. Furthermore, we conduct steady
computations with axial spacing between boundaries and the blade of 300 % axial chord length
applying steady and exact NRBC to produce reference results. The extended grid comprises
36668 cells.

In figure 1, the magnitude of the density gradients is plotted for all computations in order to
mimic the Schlieren flow visualization technique. The flow around the airfoil is supercritical,
characterised by a shock close to suction side trailing edge impinging upon the exit boundary
of the short computational domain. The flow field predicted employing the steady (Fig. 1b)
and exact NRBC (Fig. 1a) in steady computations as well as the exact NRBC in an unsteady
computation (Fig. 1d) agree qualitatively with the reference results obtained from steady com-
putations in the long domain applying both steady (Fig. 1g) and exact NRBC (Fig. 1f). The
shock position, in particular, is well captured.

x [m]

p 
[P

a]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

60000

90000

120000

150000

steady NRBC / steady 
exact NRBC / steady
exact NRBC / unsteady
2nd order approx BC / unsteady
Riemann BC / steady
steady NRBC (long) / steady
exact NRBC (long) / steady

Figure 2: Blade pressure distribution

However, the solution obtained by Riemann boundary conditions (Fig. 1c) shifts the shock
slightly upstream and diminishes its intensity. In the flow field resulting from the unsteady com-
putation employing the second order approximate boundary condition (Fig. 1e), a distinct shock
is not visible. This behaviour becomes more apparent in figure 2. Blade pressure distributions
of all simulations are compared. The figure shows that the approximate boundary condition
“smears out” the shock leading to a different suction side pressure distribution and, thus, aero-
dynamical load. Similarly, the Riemann boundary condition leads to a comparable error in the
pressure distribution. The shift and weakening of the shock is evident here as well. Accord-
ingly, an accurate prediction of integral forces, flow turning, performance and losses cannot
be expected for this type of flow from the approximate boundary condition and the Riemann
boundary condition.
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The pressure distributions of all other computations coincide almost perfectly. Yet, in the
very vicinity of the shock, all short domain computations deviate slightly from the reference
results of the long domain. But among themselves, the exact and steady NRBC short domain
results agree very well.

3.2 Transonic compressor rig

The second test case is a single-stage, transonic compressor rig of the Darmstadt University
of Technology [28]. Steady and unsteady computations are performed for the aerodynamic de-
sign point. At a rotational speed of 20000 revolutions per minute the compressor achieves a
stagnation pressure ratio of about 1.5 for a massflow of 16.3 kg/s. In order to conduct unsteady
computations efficiently, the stator is scaled to 32 blades per row, which enables simulations
having two stator blades and one rotor blade (16 blades per row) with equal pitch. The compu-
tational grid contains 254728 cells.

Figure 3: Computational model of the Darmstadt transonic compressor rig

Steady computations employ the mixing plane approach for blade row coupling [3], which
is conservative due to its formulation based upon flux averaged quantities. Several computa-
tions are conducted applying one-dimensional Riemann boundary conditions, steady and exact
NRBC. Unsteady computations utilize a conservative, non-matching interface [29] and a third
order implicit Runge-Kutta time discretization scheme with 64 time steps per segment passing
period. At each time step, 25 pseudo-time iterations are performed. First and second order
approximate boundary conditions are applied as well as steady and exact NRBC.

Figure 4 shows the impact of boundary conditions on integral flow quantities in the compres-
sor. The one-dimensional Riemann boundary conditions lead to an increase in the massflow of
approximately 0.16 % compared to all other computations and 0.03 percentage points increase
in isentropic efficiency towards steady computations employing steady and exact NRBC. This
deviation is not huge, but significant in the context of turbomachinery performance analysis.
All other solutions agree well regarding massflow and stagnation pressure ratio.

In particular, the steady and the exact NRBC predict abutting operation points and efficien-
cies. The shift in efficiency from steady to unsteady calculations can be explained from the
inherently different mechanisms of loss production in steady and unsteady computations. Since
any non-uniformity is mixed out in the mixing plane, this approach is known to overestimate
losses in turbomachinery flows [30].

Considering the unsteady calculations, the influence of the chosen boundary condition on the
operating point and performance is rather small. This might lead to the conclusion that steady
boundary conditions can properly be applied in unsteady computations.
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(a) Stagnation pressure ratio over massflow (b) Isentropic efficiency over massflow

Figure 4: Operating points for steady and unsteady computations employing different boundary conditions
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Figure 5: Unsteady blade pressure distribution along the 80 % relative mass flow streamsurface (complex Fourier
coefficient of first harmonic)

However, even in the case of similar integral values, like massflow or efficiency, the flow field
may still differ noticeably. The unsteady blade pressure distribution of the stator is depicted in
figure 5. The plot shows the complex amplitude of pressure associated with the first harmonic
(i.e. the segment passing frequency) along a stream surface that is defined such that 80 % of the
overall massflow run through the passage below this stream surface. Due to artificial reflections
arising when steady boundary conditions are applied in unsteady flows, the steady NRBC lead
to a significantly different unsteady pressure distribution. The Exact NRBC and approximate
NRBC yield comparable, but not perfectly matching unsteady pressure distributions.

Chassaing and Gerolymos demonstrate the good non-reflecting properties of the exact NRBC
applied to unsteady flows with uniform underlying mean flow [17] whereas the derivation of
the steady NRBC depends on the assumption of a steady flow field. Thus, it can be assumed
that the exact NRBC provide a better prediction of the unsteady pressure field than the steady
boundary conditions do. Since unsteady pressure fluctuations play a key role for aeroelastic
and aeroacoustic phenomena, the inaccurate prediction of the unsteady pressure field can be
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detrimental especially for these disciplines. Thus, the steady NRBC is not suitable for unsteady
flows.

4 CONCLUSIONS

We have implemented an exact formulation of non-reflecting boundary conditions in TRACE,
which is neither limited to steady flows nor suffers from the loss in accuracy raising from the
approximation of the left eigenvectors. Thus, the presented exact NRBC represents a single
method for both steady and unsteady turbomachinery flow simulations. Moreover, this method
is consistent with the natural formulation of NRBC in frequency domain methods. However,
the limitations arising from the linearisation of the quasi two-dimensional Euler equations still
hold.

We have demonstrated the strong non-reflecting properties of the exact NRBC in two test
cases. The steady flow in a two-dimensional supercritical, highly loaded turbine cascade is cap-
tured well. We observe good agreement with the non-reflecting steady NRBC as well as with
reference solutions obtained on a larger domain. Moreover, the solution coincide when switch-
ing to unsteady simulations. This behaviour is advantageous compared to the combination of
steady and approximate, unsteady boundary conditions since the flow field predicted employing
the approximate unsteady NRBC varies significantly from the steady solution obtained employ-
ing steady NRBC. Note that no unsteadiness is observed in the unsteady solutions. So the
change cannot be explained by unsteady effects.

The application to a transonic compressor stage showed that the exact method is capable
to predict the operating point and performance in good agreement with the steady boundary
condition. In contrast, less advanced one-dimensional Riemann boundary conditions diminish
the solution quality in both test cases and are, therefore, considered inferior in turbomachinery
flows.

We further demonstrated, that steady NRBC applied in unsteady computations do not neces-
sarily predict significantly different integral quantities such as performance data or the operating
point. However, in time resolving simulations, the steady NRBC lead to reflected waves that
propagate through the domain and, possibly, pollute the simulation of unsteady flow phenom-
ena.

In summary, the exact NRBC perform very satisfactory in both test cases. However, the
lagged convergence properties due to the challenging determination of temporal Fourier co-
efficients may limit the range of practical applicability. Thus, investigations on this issue are
needed to further improve convergence speed and robustness.
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