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Abstract. The direct integration of Computer Aided Geometric Design (CAGD) models into
a numerical simulation improves the accuracy of the geometrical representation of the problem
as well as the efficiency of the overall analysis process.

In this work, the complementary features of isogeometric analysis and boundary integral
equations are combined to obtain a coalescence of design and analysis which is based on a
boundary-only discretization. Following the isogeometric concept, the functions used by CAGD
are employed for the simulation. An independent field approximation is applied to obtain a
more flexible and efficient formulation. In addition, a procedure is presented which allows a
stable analysis of trimmed geometries and a straightforward positioning of collocation points.

Several numerical examples demonstrate the characteristics and benefits of the proposed
approach. In particular, the independent field approximation improves the computational ef-
ficiency and reduces the storage requirements without any loss of accuracy. The proposed
methodology permits a seamless integration of the most common design models into an analy-
sis of linear elasticity problems.
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1 INTRODUCTION

Isogeometric analysis aims to close the existing gap between the design process and anal-
ysis such that a simulation can be performed without generating a mesh. Consequently, the
accuracy and efficiency of the overall simulation process is improved, since meshing is time-
consuming [1, 2] and introduces additional (geometrical) approximation errors. In addition,
the basis functions used by design models, i.e. NURBS, provide further benefits such as high
continuity [3, 4].

However, during the last years, it has become clear that a true integration of design and anal-
ysis is far from trivial due to several reasons: first of all, most engineering design models are
based on a boundary representation (B-Rep) rather than a volume description. Secondly, three
dimensional B-Rep models are usually defined by a non-conforming partition of NURBS sur-
faces, i.e. their mathematical parametrizations have no explicit relation to each other. Thirdly,
each boundary surface is based on a tensor product structure which is a very efficient repre-
sentation but has limitations due to its four sided nature. As a result, almost all NURBS based
design models use trimming procedures to increase the flexibility of tensor product surfaces.
This means that only a certain area of a surface is visualized while the underlying mathematical
parametrization remains unchanged.

In this work, a coherent framework is presented which allows a seamless integration of
trimmed NURBS models into an analysis. In general, the governing equations of the problem
are expressed by means of boundary integral equations which are discretized by a numerical
approximation method. Here, the boundary element method (BEM) is used since it is the most
versatile approach. However, it should be pointed out that other schemes like the Nyström
method can be applied as well [5, 6]. An independent field approximation concept is introduced
in order to obtain a flexible BEM formulation. Furthermore, this allows the stabilization of
trimmed NURBS geometries by the application of extended B-splines. The following sections
provide an overview of the proposed methodology. They actually recap and unify the main
features presented in [6–8]. Hence, the interested reader is particularly referred to the first one
of these references for an in-depth discussion.

2 METHODOLOGY

2.1 Isogeometric Boundary Element Method

A linear elastic body Ω subject to external loading without body forces is considered. The
closed boundary of the domain is denoted by Γ and the surface normal n points outside. Using
Betti’s or Green’s theorem the following integral equation also known as Somigliana’s identity
is obtained

u(x) =

∫
Γ

U(x,y) t(y) dsy −
∫
Γ

T(x,y) u(y) dsy ∀x ∈ Ω, ∀y ∈ Γ (1)

where U and T are fundamental solutions for displacement and traction, respectively [9]. In
general, a fundamental solution U(x,y) provides the response at a field point y due to a unit
point source applied at x, which is denoted as source point. It should be noted that once the
Cauchy data, i.e. displacement u(y) and traction t(y), are known on the entire boundary Γ,
the representation formula (1) describes the displacement u(x) within the whole domain Ω. In
order to solve for unknown boundary values, the source points x are shifted to Γ leading to the



Benjamin Marussig, Jürgen Zechner, Gernot Beer, and Thomas-Peter Fries

boundary integral equation

c(x)u(x) =

∫
Γ

U(x,y) t(y) dsy −
∫
Γ

T(x,y) u(y) dsy ∀x,y ∈ Γ (2)

in which the coefficient c(x) depends on the geometrical angle of Γ at x and the Poisson’s ra-
tio [10]. Equation (2) represents the governing equations of the problem by means of an integral
over the boundary of the computational domain. Hence, corresponding numerical approxima-
tion methods like the BEM do not require a domain discretization.

In isogeometric boundary element formulations, the geometry as well as the boundary data
are represented by B-spline or NURBS basis functions. The boundary Γ of the computational
domain is specified by a disjoint set of patches (curves or surfaces) γ such that

Γ =
I⋃

i=1

γi (3)

which is equivalent to the representation of design models. Since this is the best geometry
representation available the computational boundary is described as accurate as possible.

Within each γ, the geometry x(ξ) is defined by a set of basis functions Bi,p of degree p
with corresponding coefficients in physical space ci which are denoted as control points. The
geometrical mapping χ from parameter space ξ to physical space is given by

χ(ξ) := x(ξ) =
I−1∑
i=0

Bi,p(ξ) ci (4)

with I representing the total number of basis functions. The main advantages of these patches
are that their continuity is directly controlled by the applied basis functions. The parameter
space ξ as well as the properties of this basis functions are determined by a knot vector Ξ which
is a non-decreasing sequence of parametric coordinates ξi. For more detailed information on
B-splines and NURBS the interested reader is referred to [2, 11]. Similar to the geometric
mapping (4), displacements and tractions of each γ are discretized by

Yu(ξ) := u(ξ) =
I−1∑
i=0

Bi(ξ) ũi and Yt(ξ) := t(ξ) =
J−1∑
j=0

Bj(ξ) t̃j. (5)

The coefficients ũi and t̃j are control parameters of the corresponding field and the related basis
functions are denoted by Bi and Bj .

The system of equations is set up using a collocation approach where the boundary integral
equation is enforced in a set of collocation points xc. In particular, each basis functionBi of the
unknown field is related to a certain xc

i . It has been demonstrated by several authors [7, 12, 13]
that the Greville abscissae

ξ̄i =
ξi+1 + ξi+2 + · · ·+ ξi+p

p
(6)

are a robust and accurate choice for the location of the collocation points, i.e. xc
i = χ(ξ̄i). For

each xc
i , the integrals of the boundary integral equation (2) with x = xc

i are evaluated using
numerical integration. Since each γ may contain non-smooth regions, it has to be subdivided
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into integration elements. Within those integration elements, the integrand is smooth and hence
numerical integration can be performed properly.

Usually, equation (6) leads to some collocation points located on the boundary of each γ.
Hence, they should be considered during the integration of adjacent γ as well. For two dimen-
sional problems, i.e. boundary curves, this is not challenging. However, in case of boundary
surfaces, detection of adjacent surfaces and determination of the collocation points’ intrinsic
coordinates within them may be very involved. Especially, if non-conforming partitions of
trimmed surfaces are considered. The application of discontinuous collocation is an elegant
remedy to this issue [6, 7]. Using such schemes, collocation points along the boundary of γ
are slightly shifted inside, thereby abolishing the link to adjacent surfaces. In general, this is
possible since interelement continuity is not necessarily required in BEM [14].

2.2 Independent Field Approximation

In the context of isogeometric BEM, the Cauchy data are discretized by means of B-splines
or NURBS. The related mappings (5) are denoted by Yu(ξ) and Yt(ξ) for displacements u and
traction t, respectively. In the following, the distinction between isoparametric and subpara-
metric patches is introduced. The former employs the isoparametric paradigm, i.e. all fields are
represented by the same basis functions, as it is generally the case in isogeometric analysis. The
latter utilizes the proposed independent field approximation. The term subparametric indicates
that less parameters are used for the description of the geometry than for the Cauchy data.

2.2.1 Isoparametric Patches

In an isoparametric discretization, the mappings Yu(ξ) and Yt(ξ) are equal to the geometri-
cal one χ(ξ). This implies some compromises. First of all, the same refinement is applied to all
fields. On the one hand, refinement of the unknown field is mandatory to improve the solution.
But as a consequence, the geometry and the known field are refined even though they may be
exactly represented by the initial basis functions. In addition to refinement aspects, the fields
have different continuity requirements along corners and edges. In particular, discontinuous
basis functions are required to describe traction jumps. However, they are not optimal for repre-
senting the displacement field, which should be continuous according to the physical constraint.
Furthermore, the number of basis functions would be increasing unnecessarily.

Thus, a preliminary conclusion is that an isoparametric discretization introduces superfluous
control variables. This increases the numerical effort and storage requirements for setting up
the system of equations, particularly for its right hand side. Moreover, refinement of CAGD
models affects the efficiency of all geometry evaluations performed during the analysis. These
points motivate the application of the proposed subparametric approach presented next.

2.2.2 Subparametric Patches

In this section, subparametric patches are introduced. The key idea is to treat each field
separately in order to fulfill their individual needs. In particular, the concept of a subparametric
element is adopted, i.e. more basis functions will be used to represent the field variables than for
the geometry representation. The basis functions of the geometry, the displacements, and the
tractions are defined by the knot vector Ξg, Ξu, and Ξt, respectively. Without loss of generality,
basis functions of the Cauchy data are defined as an extended version of Ξg, so that Ξg ⊂ Ξu

and Ξg ⊂ Ξt. This definition guarantees a proper partition of integration elements. It should,
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however, be noted that it allows the variation of basis functions types. For instance, the Cauchy
data over a NURBS patch may be approximated by B-splines. The resulting benefits are that the
evaluation of Cauchy data becomes more efficient and the refinement procedure is simplified.
Moreover, it has been demonstrated that the approximation quality is hardly effected by such a
combination [7, 13].

In the present implementation the geometry knot vector Ξg provides the initial basis for
all fields. Subsequently, basis functions are refined only if it is necessary. Discontinuous ba-
sis functions are introduced only for the traction field at non-smooth boundaries. The known
Cauchy data are classified as simple or complex boundary conditions as indicated in Figure 1.
The former can be exactly represented by Ξg, hence the corresponding discretization does not
need to be refined. Homogeneous boundary conditions or constant loading are examples for
such boundary conditions. The latter can only be approximated and the corresponding basis
functions have to be refined to improve the representation of the known Cauchy data. In such a
case, refinement is performed equally to the one for the approximation of the unknown field.

Ω

ΓN,complex

ΓN,simple

ΓN,∅

ΓD,∅

Figure 1: Examples of simple and complex boundary conditions applied to a cantilever beam. Homogeneous
boundary condition are denoted by the subscript ∅. Circles indicate the related Greville abscissae of the basis
functions which represent the known data.

To sum up, the main aim of independent field approximation is to avoid redundancies in the
discretization, leading to an enhanced isogeometric BEM formulation. At the same time, no
discretization errors are introduced and the initial design model remains unchanged during the
simulation which simplifies the interaction with CAGD software.

2.3 Stable Basis for Trimmed Geometries

In general, a trimmed parameter space has only a certain area which represents the part of an
object that is visualized. This part is denoted as valid domain Ωv for the remainder of this paper.
Usually, trimming is used for surfaces and in this case Ωv is determined by so-called trimming
curves which are defined within the parameter space of the surface.

There are two main aspects that have to be considered if trimmed geometries are integrated
into a numerical simulation: firstly, only the visualized part has to be considered for the anal-
ysis. Secondly, the trimmed parameter space has to be stabilized, because basis functions with
small support occur which may lead to ill-conditioned system matrices. Several different ap-
proaches [15–20] have been proposed to address the former issue. However, the latter has
hardly been considered in the literature so far. Hence, the current section focuses on this aspect.
In particular, it is proposed to stabilize trimmed parameter spaces by using so-called extended
B-splines which have been originally introduced in the context of fictitious domain – finite ele-
ment methods [21–24].
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Ξ :000 1 2 3 444

Ωv

Figure 2: Classification of basis function types in case of a trimmed parameter space: stable (continuous), degen-
erated (dashed), and exterior (dotted). The related Greville abscissae are illustrated by circles.

The basic idea of extended B-splines is to replace basis functions which may cause instabil-
ities by extrapolations of neighboring ones which have a sufficient large support. In order to
classify the B-splines of a trimmed parameter space, three types are introduced: stable, degen-
erated, and exterior. We propose to label B-splines Bi,p as stable if their corresponding Greville
abscissae is within the valid domain, i.e. ξ̄i ∈ Ωv. The support of exterior B-splines, on the
other hand, is entirely outside of Ωv. The remaining degenerated basis functions are partially
inside of Ωv but their Greville abscissae is outside, i.e. ξ̄i /∈ Ωv. These various types are shown
for an univariate parameter space in Figure 2. Once the degenerated B-splines are detected, the
functions within their support are substituted by extensions of the closest stable segments as il-
lustrated in Figure 3. The resulting extended B-splinesBe

i,p are defined by a linear combination
of the original ones

Be
i,p = Bi,p +

∑
j∈Ji

ei,jBj,p (7)

where Ji is an index-set of all degenerated B-splines Bj,p related to the current Be
i,p. For uni-

variate basis functions, the corresponding extrapolation weights ei,j are generally defined by the
so-called de Boor–Fix or dual functional (see e.g. [6, 23, 25]). In addition, a simplified formula
can be derived for uniform parameter spaces [22, 24]. In the bivariate case, the extrapolation
weights are simply determined by the tensor product of univariate values.

Extended B-splines inherit most properties of conventional B-splines and provide a stable
basis for the analysis of trimmed geometries. The proposed strategy for detecting degenerated
basis functions is particularly beneficial for collocation schemes, because the definition of the
collocation point locations within Ωv is straightforward, i.e. equal to the non-trimmed situation.

Ξ :000 1 2 3 444

Ωv

Figure 3: Extended B-splines
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The presented concept focuses on B-spline basis functions. However, if the geometry is defined
by trimmed NURBS, we take advantage of the independent field approximation and simply
approximate the Cauchy data by B-splines without modifying the geometrical representation.

3 NUMERICAL RESULTS

The following examples emphasize the benefits of the proposed methodology. Firstly, the
advantage of accurate geometry models is investigated. Secondly, the performance of isogeo-
metric and subparametric patches is compared. Finally, the approximation quality of extended
B-splines is studied.

3.1 Sphere

The excavation of a spherical cavity with radius rs = 5.0 m is investigated. An isotropic elas-
tic material is considered with Poisson’s ratio ν = 0.3 and Young’s modulus E = 1000 MPa.
Hydrostatic stress σ0 = 1.0 MPa is applied as loading which leads to a uniform internal pres-
sure along the excavation surface. The resulting radial displacement ur can be determined
analytically by

ur = σ0
1 + ν

2 E

r3
s

r2
(8)

where r denotes the distance of the point observed to the center of the sphere. Hence, the
reference solution for ur along the boundary, i.e. r = rs, is 3.25× 10−3 m.

The problem is solved by conventional and isogeometric BEM simulations. Both approaches
employ quadratic basis functions. The conventional BEM meshes approximate the boundary of
the computation domain with quadratic Serendipity elements. In the isogeometric case, NURBS
basis function of degree p = 2 are used. In fact, the geometry can be represented exactly by a
single NURBS patch which has degenerated edges at each pole of the sphere. This model has
been exported from the CAGD software Rhinoceros, where the precision of the exported data
was set to εe = 10−8. Discontinuous collocation is applied in order to deal with the degenerated
edges of the model.

The relative error of the radial displacement εur as well as the relative deviation of the geom-
etry representation to an analytical sphere εgeo are summarized for various degrees of freedom n
in Table 1. Further, three numerical results and their corresponding discretizations are illustrated
in Figure 5 and Figure 4, respectively.

Isogeometric BEM Conventional BEM
n εur εgeo n εur εgeo

216 1.74× 10−5 3.42× 10−8 483 1.61× 10−2 4.76× 10−1

288 2.65× 10−6 3.42× 10−8 2436 1.27× 10−3 1.53× 10−2

9312 5.58× 10−4 1.81× 10−3

12 120 4.42× 10−4 1.10× 10−3

21 858 1.49× 10−4 3.21× 10−4

38 886 7.52× 10−5 1.08× 10−4

Table 1: Relative error of solution εur
and geometry representation εgeo of the spherical excavation measured in

L2-norm due to an isogeometric and conventional BEM analysis with quadratic basis functions.
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(a) n = 288 (b) n = 483 (c) n = 38 886

Figure 4: Various unknown field discretizations of the spherical cavity with different degrees of freedom n:
(a) finest isogeometric BEM, (b) coarsest, and (c) finest conventional BEM analysis.

(a) n = 288 (b) n = 483 (c) n = 38 886

3.249 43× 10−3 3.250 03× 10−3

Figure 5: Radial displacement ur of various spherical excavation discretizations: (a) finest isogeometric BEM, (b)
coarsest, and (c) finest conventional BEM analysis.

The error εgeo demonstrates clearly the superiority of the isogeometric concept concerning
accurate geometry representations. The unrefined NURBS patch provides already a precise
geometric model, while a large number of Serendipity elements is required for an adequate ap-
proximation. Note that εgeo correlates to the accuracy of the input data εe in the isogeometric
case, hence it can be controlled by the user. Moreover, the isogeometric solution provides ex-
cellent results for ur despite of the low number of degrees of freedom n. It should, however,
be noted that the example suits NURBS basis functions ideally. Such remarkable differences
between isogeometric and conventional BEM solutions can not be expected in general. Never-
theless, conic sections and their three dimensional counterparts, e.g. spheres and cylinders, are
very common design elements for which NURBS surpass the approximation quality of conven-
tional basis functions.

3.2 Crankshaft

The concept of independent field approximation is applied to a crankshaft example. The ge-
ometry is defined by several regular NURBS patches and illustrated in Figure 6. Displacements
are fixed at the axle and flywheel, while the crank pins are subjected to vertical loading. These
boundary conditions are exactly represented by the initial discretization and do not require re-
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crank pins

flywheel

axle

Figure 6: Geometry model of the crankshaft.

finement. The material property is specified by E = 210 GPa and ν = 0.25.
Subparametric and isoparametric discretizations are applied to the problem. They differ not

only in the refinement procedure, but the type of basis function used for representing the Cauchy
data. In particular, B-splines are employed in the subparametric case. The degree of the basis
functions related to Cauchy data pc is either equal to the one of the geometry representation pg or
increased by means of degree elevation, i.e. pc = pg + 1. Subsequently, knot insertion is used to
improve the results, which is the equivalent to h-refinement in conventional analysis. For each
simulation, the analysis time ti and ts of the isoparametric and subparametric discretization are
compared. To be precise, the runtime for setting up the left hand side matrix L and the right
hand side matrix R of the system of equations is measured. Each analysis has been performed
single-threaded, concurrently for each ti and ts, and repeated several times.

The resulting speedup factors ti/ts are summarized in Figure 7. In addition, the displace-
ments corresponding to the third h-refinement step of the case where pc = pg are exemplarily
shown in Figure 8.

104 105
1

1.05

1.1

1.15

1.2

1.25

n

t i
/t

s

L

104 105

1

20

40

60

80

n

R

pc = pg pc = pg + 1

Figure 7: Computational time for the set up of L and R related to various discretization of the crankshaft example
as a function of the degrees of freedom n. The runtime of the isoparametric discretization ti is related to the
subparametric one ts.



Benjamin Marussig, Jürgen Zechner, Gernot Beer, and Thomas-Peter Fries

(a) Isoparametric

(b) Subparametric

0.000 1.607× 10−4

Figure 8: The absolute displacement |u| of the crankshaft example without degree elevation and three h-refinement
steps due to an (a) isoparametric BEM and (b) subparametric BEM discretization.

The shown results indicate that independent field approximation reduces the computational
effort, especially for the right hand side of the system of equations. The number of columns
of R is constant for all subparametric discretizations, because known Cauchy data do not need
to be refined. Hence, its storage requirement is linear with respect to the degrees of freedom n
which is the driving force for the enormous speedup with respect to R. The efficient geometry
evaluation as well as the substitution of NURBS by B-splines are the key factor regarding the
faster computation of L in the subparametric case. The former impact is clearly indicated by
the additional offset between the graphs related to pc = pg and pc = pg + 1 on the left hand side
of Figure 7.

3.3 Trimmed Cube

In order to investigate the approximation quality of extended B-splines in the context of an
isogeometric BEM analysis a unit cube is analyzed. The geometry is discretized by two different
models as illustrated in Figure 9. One is described by 6 regular patches, whereas 4 trimmed
patches are included in the other. Both represent the same geometry, i.e. `x = `y = `z = 1.0,

x̃`z

`x
`y

(a) Untrimmed

x̃`z

`x
`y

(b) Trimmed

Figure 9: Discretization of a unit cube by (a) regular patches and (b) trimmed patches.
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101 102 103 104

10−4

10−3

10−2

10−1

100

degrees of freedom n

‖ε
r
e
l‖

L
2

p = 1 untrimmed
p = 2 untrimmed
p = 1 trimmed
p = 2 trimmed

Figure 10: Relative L2-error of an exterior Neumann problem on the (trimmed) cube example with respect to the
number of degrees of freedom n.

which defines the boundary Γ of an infinite domain Ω. The boundary condition is given by

t(y) = T(x̃,y) y ∈ Γ, x̃ ∈ Ω− (9)

with Ω− denoting the void, i.e. x̃ /∈ Ω. In particular, a source point x̃ in the center of the cube
defines the boundary conditions for the exterior Neumann problem. The discretizations are set
up for different degrees p = {1, 2} and knot insertion is applied to improve the solutions. The
relative approximation error is determined by

εrel =
u(y)− U(x̃,y)

U(x̃,y)
∀y ∈ Γ, x̃ ∈ Ω− (10)

where u(y) is the obtained solution along the boundary. In Figure 10, the results measured
with respect to the L2-norm, i.e. ‖εrel‖L2 , are shown. It can be observed that the trimmed model
shows very good agreement with the untrimmed case.

4 CONCLUSIONS

A comprehensive concept for integrating design models into a numerical simulation has been
presented. The essential ingredient is that the isogeometric method applied is based on boundary
integral equations. This allows to overcome the challenge of deriving a volume discretization
from a design model, in a simple and elegant manner. In addition, no connectivity information
is required between adjacent patches. The proposed concept is completed by an independent
field approximation paradigm allowing a more flexible interaction with the design model and
a technique which stabilizes trimmed parameter space. These enhancements are by no means
restricted to the boundary element method used in this work.

The presented results demonstrate the superiority of isogeometric schemes regarding ac-
curate geometry description, the computational advantage of independent field approximation
related to conventional isoparametric formulations, and the suitability of the proposed stabiliza-
tion. The latter results are indeed very promising and deserves to be investigated in more detail.
For instance, the behavior for higher degree approximations has been neglected in the present
work and is of particular interest for further research.
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