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Abstract. An implementation of a Harmonic Balance method to simulate time-periodic, non-
linear flows in turbomachinery on hybrid grids comprising both structured and unstructured
blocks is described. It has been developed with the aim to apply it to aeroelastic analysis prob-
lems which require support for deforming meshes. The necessary modifications of an existing
implementation of a Harmonic Balance method on structured grids are presented. Especially
block boundaries require a separate treatment. For the same spatial discretization order the
solver for unstructured grids requires a moderate overhead in computational resources in terms
of computation time compared to the structured solver when applied on grids with similar spa-
tial resolution. The extended HB solver is applied to a standard turbomachinery aeroelastic test
case for inviscid flows including both subsonic and transonic configurations. The computational
results obtained are compared with results from a Harmonic Balance solver for structured grids
and references from literature.

1



Hans-Peter Kersken∗, Graham Ashcroft, Christian Frey

1 INTRODUCTION

Harmonic Balance (HB) methods have been introduced into turbomachinery CFD to effi-
ciently simulate periodic time-dependent flow phenomena by taking into account frequencies
relevant for the phenomenon under investigation only. These phenomena have traditionally
been simulated based on linearized governing equations starting from two-dimensional Euler
equations to finally three-dimensional compressible Navier-Stokes equations. The linearization
decouples the governing equations for the flow perturbations from those governing the mean
flow and allows highly efficient solvers to be constructed for the perturbations. Whilst highly
efficient this approach does not take into account nonlinear phenomena. Therefore such tools
are not expected to give accurate results when applied to problems in which nonlinear effects
are suspected to play an important role. HB methods, see for example [1, 2, 3, 4], overcome
these restrictions and allow frequency-domain methods to be applied to nonlinear, time-periodic
problems thereby taking into account the nonlinear coupling of perturbations and the mean flow.

The extension of the Harmonic Balance solver to unstructured and finally hybrid grids, com-
prising both structured and unstructured blocks, is driven by the requirement to include geo-
metrically complex components of turbomachines like cooling channels or cavities, which are
often modelled by unstructured grids. These geometrical details are a source of disturbances
which may excite blade vibrations and therefore have to be taken into account when investi-
gating aeroelastic phenomena. The newly developed solver for unstructured grids is based on
previous work on aeroelastic analysis on unstructured grids with a time-linearized solver [5]
and the development of a Harmonic Balance method on deforming grids [6] in the framework
of DLR’s block structured compressible URANS solver TRACE [7].

This paper is organized as follows: first an overview of the base flow solver, the HB method
and the spatial discretization schemes is given. Then the modifications to the implementation
are explained which are necessary when extending the existing HB implementation to unstruc-
tured grids. Finally results are compared to reference results when the solver for unstructured
grids is applied to a duct and the Standard Configuration 10 aeroelastic test case.

We will restrict ourselves in this paper to inviscid flows as the initial validation step for the
HB solver on hybrid grids.

2 NUMERICAL METHOD

2.1 Underlying flow solver

TRACE [7] is a parallel Navier-Stokes flow solver for structured and unstructured grids
that has been developed at DLR’s Institute of Propulsion Technology to model and investigate
turbomachinery flows. The code solves the finite-volume discretization of the compressible
Reynolds-averaged Navier-Stokes (RANS) equations in the relative frame of reference using
a multi-block approach. For details of the discretization on structured grid refer to [8] and
for a detailed description of the unstructured discretization see [9]. For the present work it is
sufficient to note that following the discretization of the spatial operators in the Navier-Stokes
equations the following system of ordinary differential equations (ODEs) is obtained

dq

dt
+ R (q(t)) = 0 (1)

where q is the vector of conservative variables, R is the discretized RANS residual vector and
t denotes the physical time.
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2.2 Harmonic balance method

The Harmonic Balance method described in this work is part of the CFD code TRACE.
For completeness we will summarize the HB algorithm as it is implemented in TRACE. For a
detailed description see [10]. Time-periodic solutions of Eqn. (1) can often be described by a
limited number of solution harmonics, i.e.,

q(x, t) = Re

[
K∑
k=0

q̂k(x)eikωt

]
(2)

where q̂k are the complex valued solution harmonics and ω = 2πf is the fundamental angular
frequency. In such cases it is computationally attractive to formulate the unsteady problem,
Eqn. (1), in the frequency domain, i.e. to consider

ikωq̂k + R̂(q)k = 0 (3)

for only a finite number of harmonics, k = 0, . . . , K. For configurations in which non-linearity
can be assumed to be negligible the coupling between the harmonics of q, imposed by the
nonlinear nature of R, can be neglected and one obtains K + 1 independent equations for the
solution harmonics and the time-mean solution field. Here the equations for the harmonics are
linear and only for the time-mean solution has a nonlinear equation to be solved. However, if
one wishes to retain nonlinear effects an alternative approach is required in the modelling or
computation of R̂(q)k. We compute R̂(q)k as F (R(F−1q̂))|k and therefore solve

ikωq̂k + F (R(F−1q̂))|k = 0, (4)

where F denotes the Discrete Fourier Transform (DFT) and F−1 its inverse. Eqn. (4) is solved
in the frequency domain to obtain the complex valued harmonics of the conservative variables
q̂k. To compute the harmonics of the RANS residual vector R the solution field vector is first
reconstructed atN sampling points within the period of oscillation from the Fourier coefficients
of the conservative variables q̂k using the inverse DFT. With the reconstructed solution vectors
the RANS residual vectors R are then computed at the N sampling points to enable the DFT
of R to be computed, i.e., the R̂(q)k. Note, since the RANS residual R is evaluated in the
time-domain the standard flux and discretization schemes from the underlying nonlinear solver
can be used.

As a hybrid time- and frequency-domain method the approach has the advantage, over meth-
ods formulated purely in the time- or frequency-domain, of being able to employ not only the
possibly highly nonlinear time-domain flux functions (and their stabilizing numerical limiters)
but also highly accurate nonreflecting boundary conditions formulated in the frequency do-
main [11]. Particularly in the context of aeroelasticity or aeroacoustics boundary conditions
are of the utmost importance. The implementation in TRACE of these boundary conditions is
described in [12].

For aeroelastic analysis the approach described above has to be modified to deal with time-
dependent meshes as described in [6]. The governing equations are solved by an implicit
pseudo-time approach. Discretizing the pseudo-time operator using the first-order Euler back-
ward method and then linearizing the harmonic balance residual RHB in pseudo-time the fol-
lowing system of equations is obtained[(

1

∆τ
+ ikω

)
+
∂R

∂q

∣∣∣∣
q̂
(m)
0

]
∆q̂(m) = −RHB

k

(
q̂(m)

)
, (5)
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where V̄ is the unperturbed cell volume and

RHB
k

(
q̂(m)

)
= ikω (̂V q)|k + F (VR(F−1q̂))|k, ∆q̂(m) = q̂(m+1) − q̂(m). (6)

Here m is the pseudo-time iteration counter and V the time-dependent cell volume. The cou-
pling terms have been neglected in the left-hand side and therefore it depends directly only on
the time-mean solution q̂

(m)
0 . As such the residual Jacobian ∂R

∂q
is identical to that employed

in the steady flow solver. The linear system of equations, Eqn. (5), is solved using either the
incomplete lower upper (ILU) or successive overrelaxation (SSOR) methods.

2.3 Spatial discretization

So far no reference to a specific discretization method has been made because the algorithm
described above can be applied unaltered to structured and unstructured meshes. To understand
the differences between an HB implementation for structured and unstructured grids we have to
look into the spatial discretization in more detail. For both types of grids the discretized residual
vector Ri at cell i computed by a finite volume method is given by

Ri =
1

Vi

∑
s∈Bi

Fs(q)− Si(q). (7)

Here Vi is the volume of the cell, Bi the set of its faces, Fs the numerical flux across face s and
Si any source term. Apart from the source term, which depends on the state of the cell itself
only, the residual is the sum of convective and viscous fluxes, Fs,conv and Fs,visc, respectively:

Fs(q) = Fs,conv(qL,qR) + Fs,visc((∇q)s) (8)

where Fs,conv is computed by the Roe upwind scheme [13] extended to second order accuracy
using van Leers MUSCL technique [14] while Fs,visc is discretized by a second order central
scheme. The so-called left and right states, (qL and qR) at face s which is common to cells i
and i′ are computed with second order accurate extrapolation schemes, i.e., on structured grids,

qL = qi +
1

2
(∆̃q)L, qR = qi′ −

1

2
(∆̃q)R, (9)

whereas, on unstructured grids,

qL = qi + (∇̃q)L · (xs − xi), qR = qi′ + (∇̃q)R · (xs − xi′) (10)

is used. By (∆̃q)L/R and (∇̃q)L/R we denote the limited slopes and gradients at cell centers,
respectively, see [15] and [9] for details. On unstructured grids the gradients are computed using
the Green-Gauss approach.

3 IMPLEMENTATION FOR UNSTRUCTURED AND HYBRID GRIDS

The HB solver for structured grids has been implemented by reusing computational routines
for the nonlinear residual R and its Jacobian ∂R

∂q
including the computation of the numerical

fluxes according to the previous section. As examination of Eqn. (5) and Eqn. (6) shows this
implementation strategy carries over to the implementation of the HB solver for unstructured
grids by using the respective routines from the nonlinear solver for unstructured grids.

Where different and additional implementations have to be considered is at block boundaries
in a multi-block configuration. Fig. 1 depicts the situation for a two dimensional grid with the
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Figure 1: Stencil for the second order Navier-Stokes residual on structured and unstructured meshes [5].

focus on a single stencil where the red line marks the block boundaries. Neighbouring cells may
reside on different blocks, however, their values are needed to maintain second order spatial
accuracy across block boundaries, i.e., for the extrapolation given in Eqn. (9) and Eqn. (10).
For completely structured grid this is solved by exchanging a two cell wide ghost cell layer
surrounding each block which is filled with the respective values from neighbouring blocks.
In Fig. 1 these are the cells to the right of the red line for the structured stencil. The second
order extrapolation can be performed locally at block boundaries then. This procedure at block
boundaries for structured grids does not carry over to unstructured grids because in TRACE we
keep only one layer of ghost cells on unstructured grids which is constructed from cells having
a common face with the local cell. The gradient in these cells however can not be computed
locally now because information on the neighbourhood of the ghost cell, the black triangles to
the left of the red line in the right picture in Fig. 1, is incomplete. Therefore in the nonlinear
solver a two step process is used. First the states at the ghost cells are exchanged which allows
the gradients at the cells adjacent to the boundary to be computed locally. Then the gradients
are exchanged which in turn allows to interpolate gradients to boundary cell faces to compute
the left and right states at the face required for second order spatial accuracy.

In the HB context we have to compute the nonlinear residual for every sampling point tp
used to compute the harmonics of the residual R̂(q)k = F (R(F−1q̂))|k from the recon-
structed states q(tp) = F−1q̂ and its gradients ∇q(tp) at the cell itself and its neighbours. If
we follow the procedure for the nonlinear solver here this procedure has to be repeated for every
sampling point, i.e., two communications steps are initiated each blocking the computation. It
would be preferable to cluster or even avoid these communication steps. Taking the gradients
at ghost cells not into account would reduce the spatial discretization order from second to first
order. However, observe that the inverse DFT and the computation of the gradients are linear
operations which commute, ∇q = ∇(F−1q̂) = F−1(∇q̂). Therefore instead of computing
the gradients of the states at ghost cells necessary to compute R at cells next to the boundary
by the two step procedure they can be reconstructed from the gradients of the harmonics. This
is achieved by first exchanging the harmonics q̂k and computing their gradients locally at cells
which are ghost cells at neighbouring blocks. These gradients are then exchanged. Now all data
are available to compute the nonlinear residual at every sampling point without further commu-
nication steps. For every sampling point first the states are reconstructed at the ghost cells and
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perturbation pressure real part [Pa]: 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4

Figure 2: Grid and block topology of the 2D duct
superimposed with the contours of the real part of
the pressure perturbation.

x [m]

p
re

s
s

u
re

 p
e

rt
u

rb
a

ti
o

n
 a

m
p

li
tu

d
e

 (
n

o
rm

a
li
z
e

d
)

0 0.2 0.4 0.6 0.8 1
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1
1st order at interface  (unstructured)

2nd order at interface (structured)

2nd order at interface (unstructured)

Figure 3: Normalized pressure amplitude along the
center of the duct.

in the interior from their harmonics. Then the gradients at the ghost cells are reconstructed from
their harmonics and finally the gradients at interior cells are computed from the reconstructed
states. Now the limiter is applied and the states at the cell faces according to Eqn. (10) are
computed. These steps can be performed on locally available data.

For hybrid grids comprising both structured and unstructured blocks non-matching inter-
faces may be generated, i.e., faces on one side of a block boundary between two blocks overlap
with more than one face on the other side. In grids for turbomachinery simulation this happens
especially where components with complex geometries like cooling channels or cavities are
connected to the main flow geometry. Here a spatially first order coupling algorithm is imple-
mented. The algorithm basically reconstructs the solution at the sampling points, interpolates
the reconstructed states to the ghost cells at the neighbouring block and performs a DFT using
all relevant frequencies at this block to update the harmonics. The algorithm is explained in
detailed in [16].

4 VALIDATION

4.1 Spatial discretization order at block boundaries

To demonstrate the effectiveness of the mechanism described in section 3 a simple 2D duct
configuration has been constructed comprising two blocks and 2500 cells. An acoustic wave
is prescribed at the entry of the duct with an amplitude of 0.5Pa, a frequency of 400Hz and a
circumferential wave number 0 in an axial mean flow with Mach number 0.6. The grid, together
with the real part of the pressure perturbation, is shown in Fig. 2. The unstructured grid is con-
structed from the same cells as the structured grid. In Fig. 3 the pressure perturbation amplitude
is plotted along the center of the duct. Without the new implementation of the gradient com-
putation at block boundaries a jump at the block boundary can be seen due to the degradation
of the spatial discretization order. With the gradients at the ghost cells included the solution
using the HB solver for unstructured grids follows the solution computed with the HB solver
for structured grids.
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X
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Figure 3: Computational domain, block topology and grid (every second mesh point only) for Standard Configu-
ration 10.

4.2 Aeroelastic test case

To validate the HB solver for unstructured meshes for flutter problems the extended solver is
applied to the well documented aeroelastic test case Standard Configuration 10 (STCF10) [17].
The test case is simulated by solving the nonlinear Euler equations. The two-dimensional com-
putational domain comprises a total of 5600 cells distributed over 6 blocks, see Fig. 3. The entry
and exit boundaries of the computational domain are located approximately one chord length
upstream and downstream of the compressor blade, respectively. In [6] an excellent agreement
of simulation result obtained with the HB solver in TRACE for block-structured grids with data
from literature is reported. We will compare the results obtained with the solver for unstructured
grids with these results and with results given in [18]. Fig. 4 shows the computed time-mean
flow fields in terms of the isentropic Mach number Mis along the surface of the blade. At
both operating points the numerical results agree very well with the corresponding data for the
solver on structured grids. The aeroelastic stability of the two-dimensional compressor cascade
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Figure 4: Isentropic Mach number distributions for the subsonic (left) and transonic cases (right) computed with
the structured and the unstructured solvers.
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Figure 5: Normalized aerodynamic damping at subsonic (left) and transonic (right) flow conditions with ω∗ = 1
and ω∗ = 0.5, respectively.

is investigated for a torsional mode with an amplitude of 0.01◦ and axis of rotation located at
midchord for a reduced frequency ω∗ of 1.0 for the subsonic and 0.5 for the transonic case. ω∗

is defined by ω∗ = cω/|U |Inlet. Where c is the chord length and |U |Inlet the velocity magnitude
at the inlet. The simulation has been performed with a single higher harmonic, the prescribed
frequency of the torsional mode. The computed values of aerodynamic damping, normalized
against the value at an inter blade phase angle of 180◦, are shown in Fig. 5 and compared against
results obtained with the HB solver for structured grids and a reference from literature [18]. As
can be seen in Fig. 5 the HB solutions show very good agreement with the structured solver
results and the literature results for the subsonic case. The discrepancies observed for the tran-
sonic case can be attributed to the sensitivity of the position of the acoustic resonance at an
inter blade phase angel of about -100◦. Its position is very sensitive to the velocities at the exit
boundary which in turn are sensitive to the position of the shock which depends to some extent
on the specific solver parameters and the spatial resolution of the grid.

Structured and unstructured grids have the same size. Therefore we use this case to asses
the overhead incurred by using the unstructured formulation instead of the structured. Fig. 6
shows the L1 residual norm of the first harmonic for an inter blade phase angel of 60◦. Having
almost the same algorithmic convergence rate as seen in the right plot of the figure, from the
left plot one deduces that the computation time to achieve the same residual norm about 15%
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Figure 6: L1 norm of the residual for the first harmonic.
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Figure 7: Mesh near the leading edge, with the in-
terface indicated in blue, and the harmonic pressure
amplitude on the hybrid grid (left) and on the refined
structured grid (right).
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Figure 8: Damping curve normalized to value at
180◦ computed on the refined unstructured grid and
the and the hybrid grid.

larger. This is acceptable with configurations in mind where a configuration due to its complex
geometry can be simulated efficiently with an unstructured grid only.

To demonstrate the ability of the solver to handle hybrid grids the O-block surrounding the
blade is refined by increasing the number of grids points by a factor of two such that at the
block boundary the 1-1 connectivity is replaced by a non-matching connectivity. The O-block
although having a structured topology is converted to an unstructured block, see the two plots
at the top of Fig. 7. Reference results have been generated on a structured grid which is refined
by a factor of two globally. As shown in Fig. 7 the pressure perturbation amplitude for an
inter blade phase angle of 60◦ displays only small differences when computed on a grid with
or without the non-matching interface. This holds for all other inter blade phase angles. The
damping curve computed on the hybrid grid shows very good agreement with the results on the
refined structured grid.

5 SUMMARY AND OUTLOOK

In this paper we described the steps to build a Harmonic Balance solver on hybrids grids
for inviscid flows. It makes heavy use of functionality already available in the base solver. At
block boundaries, both with 1-1 and non-matching connectivity, additional effort is necessary
to maintain second order spatial accuracy at boundaries with 1-1 connectivities or handle the
non-matching case. The new solver has been applied to the reference test case Standard Config-
uration 10. Very good agreement of the simulation results has been obtained with results from
the HB solver for structured grids and reference results from the literature for the subsonic oper-
ation point. The differences observed for the transonic operation point can be explained by the
sensitivity of the position of the acoustic resonance on the mean flow conditions. A simulation
on a hybrid grid demonstrated the ability of solver to handle non-matching block boundaries.

The simulation results show that a HB method has been developed which includes the nec-
essary ingredients for the aeroelastic analysis on hybrid grids. To apply the method to turbo-
machinery configurations with relevance to industry the solver will be extended to solve the
URANS equations including a turbulence model by the HB method. For increased accuracy
work is ongoing to maintain second order spatial discretization order at non-matching inter-
faces.
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