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Abstract. In this work the influence of geometry, load and material properties on the non-

linear vibrations of a simply supported viscoelastic circular cylindrical shell subjected to lat-

eral harmonic load is studied. Donnell’s non-linear shallow shell theory is used to model the 

shell, assumed to be made of a Kelvin-Voigt material type, and a modal solution with six de-

grees of freedom is used to describe the lateral displacements. The Galerkin method is ap-

plied to derive a set of coupled non-linear ordinary differential equations of motion. Obtained 

results show that the viscoelastic dissipation parameter has significant influence on the insta-

bility loads and resonance curves. 
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1 INTRODUCTION 

Circular cylindrical shells have been extensively used in modern industrial applications 

and have made their analysis an important research area in applied mechanics and biomechan-

ics. Viscoelastic materials are frequently used in sandwich structures such as beams, plates 

and shells where damping is desired for a wide range of frequencies. However, in spite of a 

large number of studies on cylindrical shell dynamics, just a small number of these works is 

related to the analysis of viscoelastic shells. 

An approximate theory for the linear dynamic response of viscoelastic cylindrical shells 

and cylindrical laminated composites with viscoelastic layers was proposed [1]. Also, ed the 

finite element method was applied  to study the vibration of damped viscoelastic shells based 

on a first-order shear deformation theory including rotation around the normal [2]. A finite 

element formulation was developed to study the damping effects due to a constrained viscoe-

lastic layer on the natural frequencies and loss factors of empty and fluid filled cylindrical 

shells [3]. 

Later, the dynamic behavior of viscoelastic cylindrical shells subjected to axial loads using 

the Von Kármán-Donnell non-linear shell theory, together with the Boltzmann laws to model 

the linear viscoelastic material was studied and observing the complex non-linear responses of 

the shell such as hyperchaos, chaos, strange attractors, and limit cycles [4]. The post buckling 

behavior of imperfect cylindrical panels considering a non-linear Schapery viscoelastic mate-

rial was considered. It was possible to observe that, if linear viscoelastic and non-linear visco-

elastic models are compared, the non-linear viscoelastic constitutive model predicts higher 

deflections than the linear viscoelastic ones [5]. 

After, a general methodology looking to describe the non-linear vibrations of viscoelastic 

shell structures, considering periodic or damped responses through the coupling of the har-

monic balance method with one mode Galerkin discretization was considered [6]. The radial 

motions of compressible non-linearly viscoelastic cylindrical and spherical shells under lateral 

time-dependent pressures [7]. Considering temperature effects, the thermal post-buckled char-

acteristics of cylindrical composite shells with viscoelastic layers by applying the finite ele-

ment method considering transversal shear deformation and variable in-plane displacements 

through the thickness of the shell [8]. 

The problem of dynamic stability of viscoelastic, extremely shallow, circular cylindrical 

shells considering any viscoelastic functions as well as the inclusion of time-dependence of 

Poisson’s ratio was also considered [9]. Forced vibrations of elastic and viscoelastic arches, 

panels and cylindrical shells using an asymptotic numerical method was studied in [10]. In the 

analysis, a mathematical formulation was developed in order to take into account various vis-

coelastic models in the frequency domain. 

In a series of papers [11, 12, 13, 14, 15, 16] the vibrations and dynamic stability of viscoe-

lastic cylindrical shells and cylindrical panels, with and without concentrated masses, using 

the Kirchhoff-Love hypothesis and Timoshenko theories and taking into account shear defor-

mation and rotary inertia were considered. 

Based on the profile of displacement fields of the core layer in static deformation, a new 

higher-order expansion of transverse and in-plane displacement fields in the thickness direc-

tion of the core layer was developped [17]. 

Recently, a detailed literature review of current studies on non-linear vibrations of shells 

where, a reduced number of studies dedicated to the analysis of viscoelastic cylindrical shells 

can be confirmed [18]. 

In the present paper, the influence of geometric relations, load and material properties on 

the non-linear vibrations and dynamic instability of a simply supported viscoelastic circular 



Zenon J. G. del Prado, Marco Amabili and Paulo B. Gonçalves 

 

cylindrical shells subjected to lateral harmonic load is studied. Donnell’s non-linear shallow 

shell theory is used to model the shell, which is assumed to be made of a Kelvin-Voigt mate-

rial type, and a modal solution with six degrees of freedom. The Galerkin method is applied to 

derive a set of coupled non-linear ordinary differential equations of motion that are, in turn, 

solved by the Runge-Kutta method. Results show that the viscoelastic dissipation parameter 

has a very significant influence on the instability loads and resonance curves. 

2 MATHEMATICAL FORMULATION 

Consider a perfect thin-walled simply supported circular cylindrical shell of radius R, 

length L and thickness h. The axial, circumferential and radial coordinates are denoted by x, 

y = R and z, respectively, and the corresponding displacements of the shell middle surface 

are denoted by u, v and w, as shown in Figure 1. The shell is assumed to be made of a Kelvin-

Voigt viscoelastic material with initial Young’s modulus E, Poisson ratio , and density . 

L

R

x (u)

y (v)
z (w)

h

 
 

 

(a) 

f

 
(b) 

Figure 1: Shell characteristics. (a) Shell geometry; (b) Harmonic lateral pressure f. 

The shell is subjected to the following harmonic lateral pressure: 
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where FL is the nondimensional coefficient of the amplitude of the load, o is the natural 

frequency of the shell, m ,the number of axial half-waves, n, the circumferential wave number, 

L , the frequency of the load and t the time. 

Based on Donnell shallow-shell theory, the middle surface kinematic relations are given, in 

terms of the three displacement components, by: 
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where x,0 and  are the strains in the axial and circumferential directions, x is the 

shearing strain component at a point on the shell middle surface, xx and  are the curvature 

changes and x is the twist.  

The strain components εxx, εθθ and γxθ at an arbitrary point of the shell are related to the 

middle surface strains εx,0, εθ,0 and γxθ,0 and to the changes in the curvature by the following 

relations: 
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.,, 0,0,0,   xxxxxxxx zzz 
 (3) 

In this analysis, the viscoelastic behavior of the material is modeled in the base of the Kel-

vin-Voigt viscoelastic theory. This viscoelastic model can be represented by a viscous damper 

element and an elastic spring element connected in parallel as illustrated in Fig. 2. 

 

  E 

 E
 

Figure 2. Kelvin – Voigt viscoelastic model

 

Considering the plane stress problem and the Kelvin-Voigt constitutive model of a viscoe-

lastic material, the stress-strain relations can be written as [19]: 
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where E is the Young’s modulus ,  is the Poisson coefficient, t is the time and  is the co-

efficient of the viscoelastic dissipation parameter, also named retardation time, and it is meas-

ured in seconds. 

Using the stress function F, the forces in the axial, circumferential and tangential directions 

are 
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The non-linear equation of motion, based on the Donnell shallow shell theory, in terms of a 

stress function F, the lateral displacement w is given by: 
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where c = 2o (kg/m
3
 s) is the viscous damping coefficient,  is the viscous damping ra-

tio of the shell  and f is the radial pressure applied to the surface of the shell due to external 
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force. In equation (8) a global viscous damping has been introduced in addition to the viscoe-

lasticity of the shell material.  

The compatibility equation is given by 
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The simply supported out-of-plane (Eq. 10) and the in-plane (Eq. 11) boundary conditions 

are respectively given by: 

 LxMw x ,0at0,0   (10) 

 LxvNx ,0at0,0   (11) 

For a formulation based on a stress function, the in-plane boundary conditions are satisfied 

on the average by introducing the following conditions, as justified, for example, in [20, 21, 

22, 23, 24]  

 LxdRN x ,0at0

2

0




  (12) 

 LxdRN x

L

,0at0

2

0 0

 


   (13) 

Equation (12) assures a zero axial force Nx on the average, while Eq. (13) is satisfied when 

u and w are continuous in  on average, and v = 0 on average at both ends. 

In this work, the following modal expansion for the lateral displacements w(x,,t) in terms 

of the circumferential and axial variables is adopted: 
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where 1(t), 2(t), 3(t), 4(t), 5(t) and 6(t) are the time-dependent non-dimensional modal 

amplitudes, where the shell thickness h has been used as non-dimensionalization parameter. 

This leads to a six-degrees-of-freedom reduced order model. This modal expansion satisfies 

the out-of-plane boundary conditions (10) and includes the basic vibration mode, the compan-

ion mode and four axi-symmetric modes and has been thoroughly tested in [20, 21, 24]. 

The solution for the stress function may be written as F = Fh + Fp, where Fh is the homo-

geneous solution and Fp, the particular solution. The particular solution Fp is obtained analyti-

cally by substituting the assumed form of the lateral displacement, Eq. (14), on the right-hand 

side of the compatibility equation, Eq. (9), and by solving the resulting partial differential 

equation together with the relevant boundary and continuity conditions. 
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The homogeneous part of the stress function can be written as (Amabili et al, 1999): 
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where  xx NNN
~

and
~

,
~

 are the in-plane restrain stresses at the ends of the shell. 

Upon substituting the modal expressions for F and w(x, , t) into the equation of motion, 

Eq. (8), and applying the Galerkin method, a set of six non-linear ordinary differential equa-

tions is obtained in terms of the time-dependent modal amplitudes, i(t). 

In analysis, the following non-dimensional parameters are used for time and shell frequen-

cy: 

 oLo t   ;  (16) 

3 NUMERICAL RESULTS 

Consider a simply supported viscoelastic cylindrical shell with the following physical and 

geometrical properties: R = 0.2 m, L = 0.4 m,  = 1340.0 kg/m
3
,  = 0.195, E = 45.5e9 N/m

2 

[25],  = 0.001. 

To study the influence of geometry on nonlinear dynamic behavior of the orthotropic shells, 

Table 1 displays the selected L/R ratio, R/h ratios, associated longitudinal and circumferential 

wavenumber and natural frequencies which will be used on the foregoing analysis. 

 

L/R R/h (m,n)  (rad/sec) 

2,0 

100 (1,5) 3447.29 

300 (1,7) 2007.06 

600 (1,8) 1427.86 
Table 1: Selected shell geometries 

To try to understand the influence of both the viscoelastic dissipation parameter and the 

lateral load on the non-linear dynamic behavior of the shell, several resonance curves and 

time responses have been computed. The bifurcation diagrams were obtained using Poncaré 

mapping and considering the excitation frequency as control parameter. The nondimensional 

coefficient of the amplitude of the lateral load FL was assumed as 0.2; for the coefficient of 

the viscoelastic dissipation parameter of the Kelvin-Voigt model , the following values were 

assumed: 0.0, 1.0e-5, 2.0e-5 and 3.0e-5 and 1.0e-4 s. 

Figure 3 displays the resonance curves of driven mode for FL = 0.2; L/R = 2.0; R/h=100 

and increasing values of the dissipation parameter. As it can be observed in Fig. 3(a), for a 

shell without viscoelasticity ( = 0.0), as the frequency parameter  is increased the shell dis-

plays small amplitude period oscillations (1T). At excitation frequency near  = 0.90 the shell 

displays a jump from small to large amplitude oscillations displaying softening behavior. As 

the value of  is increased, the shell shows a reduction of the amplitude of oscillations. 

Now, when the viscoelastic dissipation parameter is considered ( ≠ 0), the non-linear be-

havior of the shell is strongly influenced. Figure 3(b) shows the resonance curve for  = 1.0e-

5 s and as the frequency parameter  is increased, the shell displays small amplitude 1T peri-

od oscillations. Again at a value close to  = 0.90, the shell displays a jump to large ampli-

tude oscillations with strong softening behavior. Then, for  between 0.72 and 0.77, the shell 

displays three different stable equilibrium points, which means that there will be three stable 
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attractors. At large amplitude a folding of the backbone curve (turning point) associated with 

large bending effects occurs. 

When  is increased to 2.0e-5 s as shown if Fig. 3(c), the resonance curve is again affected 

and it shows softening behavior but with smaller vibration amplitudes than for the previous 

case. Also, in Figs. 3(b) and 3(c) for =1.0 the shell displays a bifurcation point where the 

unstable path is linked to the large vibrations amplitudes path. Now, in Fig. 3(d) for n = 3.0e-

5 s, the shells displays only small amplitude vibrations without any jump. 

Figure 4 displays the resonance curves for FL = 0.2; L/R = 2.0; R/h=300 and increasing 

values of the dissipation parameter. Now, in Fig. 4(a) for  = 0.0, as the frequency parameter 

 is increased the shell displays small amplitude period oscillations (1T). At excitation fre-

quency near  = 0.92 the shell displays a jump from small to large amplitude oscillations dis-

playing softening behavior, as can be observed, the vibrations amplitudes for this case are 

higher than those of Fig. 3(a) showing the great influence of geometric relations on the non-

linear oscillations of the shell. For this case, it is also possible to observe a bifurcation point 

near to  = 1.00 where stable solutions coexist.  

Now, if dissipation parameter is considered ( ≠ 0.0), Fig. 4(b) the shells depicts the reso-

nance curve for  = 1.0e-5s, as can be observed, there is softening behavior with large ampli-

tude 1T oscillations with similar behavior as Fig. 4(a). Now, if dissipation parameter is 

increased to  = 2.0e-5s as displayed on Fig. 4(c), the non-linear response of the shell is af-

fected and the shell displays softening behavior with smaller amplitude oscillations and the 

coexistence of stable and chaotic vibrations. When dissipation parameter is increased up to 

 = 3.0e-5s as shown in Fig. 4(d), the system displays a jump with softening behavior but 

again with smaller vibration amplitudes that in previous cases. 

Finally, Fig. 5 depicts the resonance curves considering FL = 0.2; L/R = 2.0; R/h=300. In 

Fig. 5(a) the dissipation parameter is not considered ( = 0.0) and, as observed, the shell dis-

plays softening behavior with very large amplitude if compared with previous cases. In Fig. 

5(b), Fig. 5(c) and Fig. 5(d) the shell always shows softening behavior but only with 1T stable 

oscillations. For  = 3.0e-5s as seen in Fig. 5(d), the amplitude of oscillations are smaller than 

in Fig. 5(b) or Fig. 5(c). 

From these diagrams, it is possible to see the strong influence that geometry ratios and dis-

sipation parameter have on the non-linear dynamic response of the shell. For a shell with low 

R/h ratio the shell displays smaller vibration amplitudes than a shell with high R/h ratio. When 

dissipation parameter is considered, for low values the amplitude of oscillations of the shell 

are increased even knowing that this parameter is a dissipation, for higher values of the pa-

rameter the vibration amplitudes of the shell will be reduced. 
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Figure 3. Ressonance curves for L/R = 2,0 and R/h = 100. (a)  = 0.0; (b)  = 1.0e-5s; (c)  = 2.0e-5s; (d) 

 = 3.0e-5s. 
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Figure 4. Ressonance curves for L/R = 2.0 and R/h = 300. (a)  = 0.0; (b)  = 1.0e-5s; (c)  = 2.0e-5s; (d) 

 = 3.0e-5s. 
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(d) 

Figure 5. Ressonance curves for L/R = 2.0 and R/h = 600. (a)  = 0.0; (b)  = 1.0e-5s; (c)  = 2.0e-5s; (d) 

 = 3.0e-5s. 
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4 CONCLUSIONS 

In this work, the non-linear vibrations analysis of a viscoelastic Kelvin-Voigt simply sup-

ported cylindrical shell subjected to lateral time dependent loads is analyzed. To model the 

shell, the Donnell’s non-linear shallow shell theory is applied and an expansion with 6 de-

grees of freedom is used to describe the lateral displacements. Results show that the inclusion 

of the viscoelastic dissipation parameter  of the Kelvin-Voigt material affects strongly the 

non-linear response of the shell. 

It is observed that the complexity of the non-linear response and consequently the number 

of bifurcations, non-linear paths and coexisting solutions depends on the value of the viscoe-

lastic dissipation parameter. 

For higher values of the dissipation parameter, the shell only displays small amplitude vi-

brations without jumps, hysteresis and multiple solutions. This illustrates the beneficial effect 

of viscoelasticity in reducing large amplitude unwanted vibrations. The amplitudes of vibra-

tions obtained in the numerical results calls to the necessity to use a more refined shell theory 

to describe the non-linear dynamic behavior with good accuracy. 
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