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Abstract. The current state-of-the-art adjoint design optimizations for turbomachinery compo-
nents focus solely on aerodynamic cost functions and constraints, yet disregard structural fea-
sibility during the optimization procedure. This paper presents the first steps taken towards in-
cluding structural constraints in a multidisiplinary adjoint optimization design chain for turbo-
machinery components. Particularly in turbomachinery, deformations arise due to centrifugal
and pressure load during running conditions, which lead to a coupled fluid-structure interaction
problem. While most optimization methods treat the fluid and structure domains separately in
a single-disciplinary fashion, we seek to directly include the coupled fluid-structure interaction
within the adjoint optimization. To this end, a cold-to-hot transformation tool that deforms a
CAD geometry based on FEM displacements is implemented and differentiated using adjoint
algorithmic differentiation to compute the required transformation sensitivities.
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1 INTRODUCTION

Current adjoint optimization methods for turbomachinery components focus mainly on aero-
dynamic cost functions and constraints , e.g. [3], [10], [18]. The structural feasibility of the
resulting optimized shape is usually tested a posteriori by conducting a stress analysis. As a
result, an aerodynamically optimized shape may exceed defined stress tolerance levels and a
new shape will have to be designed. This can lead to several costly design iterations. Multidis-
ciplinary adjoint optimization seeks to take structural constraints into consideration during the
optimization process by coupling the fluid and structural disciplines. This will avoid unneces-
sary design iterations and directly compute an aerodynamically optimized shape, which is also
structurally feasible.

Turbomachinery components pose an additional challenge due to the deformations which
occur at running conditions. These are caused by rotation-induced centrifugal forces, gas pres-
sure loads, as well as thermal expansions due to temperature changes. The deformation process
is known as the cold-to-hot transformation [5], which can be seen as a fluid-structure interac-
tion problem. The cold state defines the at-rest state at which a component is manufactured.
The hot state defines the deformed state of a component during running conditions. Typically,
these deformations are not taken into account during the optimization process itself, but rather
a shape is optimized in its hot state and transformed a posteriori to its cold shape for manufac-
turing. In this case, the parametrized CAD geometry used in the optimization, also named the
master CAD geometry, is defined in the hot state [6]. However, this method has the downside
that the master CAD geometry used in the optimization was generated for one specific design
point. Different design points, each with their own centrifugal and pressure loads, would result
in different deformed hot geometries. Nevertheless, often the same master CAD geometry is
used to compute other design points. Additionally, the cold geometry that is generated after
the optimization may no longer fulfill manufacturing constraints, e.g. flank milling of radial
machines requires ruled surfaces.

As opposed to a hot state optimization and an a posteriori hot-to-cold transformation, we pro-
pose setting the cold state CAD parameters as the design parameters for the optimization with
the cold-to-hot deformation being computed during the simulation. As a result, the optimiza-
tion would directly compute a manufacturable cold state geometry of a component optimized
for a chosen design point. Since the final goal is an adjoint multidisiplinary optimization, the
differentiation of an entire cold-to-hot chain is required. In this paper, we present first steps
towards this alternative by implementing an adjoint version of a cold-to-hot transformation tool
to compute the required sensitivities.

First, we will motivate our goal of adjoint multidisciplinary optimization in section 2. Sec-
tions 3 and 4 outline the cold-to-hot algorithm and its differentiation with AD, respectively. The
results are presented in section 5 with concluding remarks in section 6.

2 ADJOINT MULTIDISCIPLINARY OPTIMIZATION

This section introduces the motivation of adjoint multidisciplinary optimization in turbo-
machinery. With the goal of optimizing the shape of a turbomachinery component, a metric
referred to as the cost function J(x) 2 R

c, e.g. efficiency, has to be optimized, i.e. maxi-
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mized. The parameters which can be varied to minimize the cost function are referred to as
the design parameters x 2 Rd. The cost function is minimized using an optimization method,
which mainly falls into one of the two categories of gradient-free or gradient-based optimiza-
tion methods.

Gradient-free optimization methods can be used to compute improved designs using only
cost function evaluations, but finding the true optimal design is not guaranteed. Additionally,
converging towards an optimum can require a large number of evaluations and the cost of the
optimization is dependent on the number of design parameters d. Gradient-based optimization
methods, on the other hand, use sensitivity information to compute a minimum with less it-
erations than gradient-free methods. However, these methods compute a local minimum and
cannot guarantee that the computed minimum is indeed the global minimum, unless the opti-
mization problem is convex. Furthermore, the sensitivities of the cost function with respect to
the design variables

@J

@x
2 Rc�d (1)

have to be computed. Typical approximation methods, such as finite differences (FD), compute
the gradient (1) at a cost proportional to the number of design parameters d, which can lead to
high computational costs.

Using the adjoint approach, first introduced by Pironneau [15] and later in the application of
aerodynamic design optimization by Jameson [8], [16], the gradient (1) can be computed at a
cost proportional to the size c of the cost function J . In the context of aerospace engineering,
one is typically interested in few parameters such as efficiency, mass flow rate, pressure ratio,
and maximum stresses. Thus, the size of the cost function is usually much smaller than the size
of the design space, such that c� d. Thus, the adjoint method offers a significant performance
advantage for gradient-based optimization methods over gradient-free methods, given a smooth
design space. Notably, the cost of computing the gradient is independent of the number of
design variables d, allowing a much greater design space. The adjoint approach requires the
evaluation of the adjoint model

x(1) =
@J(x)

@x

T

J(1) (2)

of the cost function. First deriving a continuous form of the adjoint model (2), then discretizing
it, is referred to as the continuous adjoint [9] approach. However, deriving a continuous adjoint
model of a complex system of equations can be extremely difficult and error prone. Alterna-
tively, the discrete adjoint [11] approach discretizes the system of equations first, then derives an
adjoint model of the discretized system of equations. By using the code transformation method
algorithmic differentiation (AD) [7], [13], also known as automatic differentiation, an adjoint
model of a computer program code can be easily generated. In total, this makes the discrete
adjoint optimization method an efficient and precise alternative to gradient-free optimization
methods.

Gradient-free optimization methods have been applied in the context of CAD-based multidis-
ciplinary optimization of turbomachinery components e.g. by [12], [17]. In this project, we seek
to apply the discrete adjoint approach. We especially want to focus on the fluid-structure inter-
action (FSI) problem portrayed in the introduction (section 1). An essential aspect of FSI within
a CAD-based optimization is the interface between the fluid, solid, and CAD disciplines. The



Marc Schwalbach and Tom Verstraete

cold-to-hot transformation (section 3) provides one such interface. Within an adjoint optimiza-
tion, a discrete adjoint model of this interface is required, which is achieved by differentiating
the cold-to-hot transformation using AD (section 4).

3 COLD-TO-HOT TRANSFORMATION

The cold-to-hot transformation implemented in this project is based on the method detailed
in [5]. Given an FEM mesh that is generated from a cold state CAD geometry, an FEM linear
elastic computation is carried out to compute the displacements generated by given centrifu-
gal forces. For now, we are focusing on deformations caused only by centrifugal forces. By
perturbing the B-spline surface control points, the computed FEM displacements are matched
and the CAD geometry is transformed to its hot state. In this section, the key steps of the
transformation will be outlined. The interested reader is referred to [5] for a more detailed ex-
planation of the algorithm and to [4], [14] for an in-depth discussion of computational geometry.

A B-spline surface

S(u; v) =
n�1X
i=0

m�1X
j=0

N
p
i (u)N

q
j (v)p

0
i;j; (3)

is given with basis functions Np
i (u) and N

q
j (v) of order p and q, respectively, foot points 0 �

u � 1 and 0 � v � 1, and control points p0i;j 2 R
3. The position of FEM nodes d0

k 2 R
3 and

their respective displacements �dk 2 R
3 are given as well. k = 0; :::; s � 1, where s defines

the number of FEM nodes on the surface.

3.1 FEM node projection

The FEM nodes d0
k are projected onto surface foot points (uk; vk) by solving a point inversion

problem, which can be solved using a suitable algorithm from [14]. As depicted in figure 1, the
displacements �dk are imposed onto the foot points (uk; vk), to compute the displaced node
points

dk = S(uk; vk) + �dk: (4)

Figure 1: Displacing surface point S(uk; vk) with FEM displacement �dk
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Using the assumption that the displaced node points dk must pass through the deformed
B-spline surface bS(uk; vk), the following system of equations can be derived:

n�1X
i=0

m�1X
j=0

N
p
i (uk)N

q
j (vk)�pi;j = �dk; k = 0; :::; s� 1; (5)

where �pi;j represents the change to control point pi;j . Typically, this system is overdetermined
since the number of FEM nodes s is usually greater than the number of control points n � m.
This system can be solved using a least-squares method.

3.2 Solve for outer control point displacements

While the solution of the system (5) can deliver the required control point displacements
�pi;j for a single surface bS(u; v), multiple surfaces with adjacent edges are mostly involved in
a complex geometry. An explicit treatment of the surface edges is required to avoid different
solutions of �pi;j along adjacent edges, which can lead to undesirable kinks. The control points
along the surface edges are thus solved first by treating the edges as B-spline curves. This results
in the overdetermined system of equations

n�1X
i=0

N
p
i (uk)�pi = �dk; k 2 Kedge; (6)

withKedge defining the set of FEM nodes along the edge.

3.3 Solve for inner control point displacements

Once the control point displacements along the edges �pi;0;�pi;m�1;�p0;j;�pn�1;j are de-
termined, the known values of (5) can be moved to the right-hand side to solve for the remaining
inner control point displacements

n�2X
i=1

m�2X
j=1

N
p
i (uk)N

q
j (vk)�pi;j = �dk �

n�1X
i=0

N
p
i (uk)[N

q
0 (vk)�pi;0 +N

q
m�1(vk)�pi;m�1]

�
m�2X
j=1

N
q
j (vk)[N

q
0 (uk)�p0;j +N

p
n�1(uk)�pn�1;j];

k 2 Kinner; (7)

withKinner defining the set of remaining inner FEM nodes. Afterwards, the control points can
be updated by

p = p0 +�p (8)

and continuity correction methods can be used to ensure continuity at the common edges of
deformed surfaces. Results of the implemented algorithm are presented in section 5.1.

4 SENSITIVITY COMPUTATION

For the computation of the sensitivities of the structural quantity of interest, e.g. the maxi-
mum von Mises stress �max 2 R, with respect to the design parameters� 2 Rd, the sensitivities
of an entire chain of operations have to be considered. While the inclusion of pressure loads
from the CFD solution is required to fully couple the fluid and structural disciplines, for now
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we regard only centrifugal loads. Consider figure 2 for the chain of computations required to
compute the structural quantity �max.

CAD kernel grid gen.

CSM

cold-to-hot

stress comp.

Figure 2: cold-to-hot flow chart

One starts off with design parameters �, which can define initial control points of the cold
geometry, as well as application specific parameters such as inlet- and outlet radius. � is then
plugged into the CAD kernel which generates a cold B-spline surface Si

c, which is used to gen-
erate the initial solid mesh 
i

s. The solid mesh, along with the known centrifugal forces Fc,
is then used in the computational structural mechanics (CSM) solver to compute the FEM dis-
placements �di+1. The solution of the CSM solver automatically gives us an updated solid
mesh 
i+1

s . The FEM displacements �di+1 are then plugged into the cold-to-hot transforma-
tion algorithm to compute the updated control points pi+1, which can be used to generate an
updated geometry Si+1. Once this deformation loop, which is boxed within a dashed line in
figure 2, has converged, the maximum von Mises stress �max can be computed.

Performing a structurally constrained gradient-based optimization would require differenti-
ating the entire described chain to compute the gradient

@�max

@�
2 R1�d: (9)

Typically, it would hold that d � 1, which gives the opportunity of a cheap gradient computa-
tion using adjoints. However, this would involve computing the adjoints of the entire cold-to-hot
chain. A first step towards computing the adjoints of this entire chain is made by computing the
adjoints of the cold-to-hot transformation

p(�d) = p0 +�p(�d): (10)

The corresponding 1st-order adjoint model is given by

�d(1) =
@�p

@�d

T

p(1); (11)

which will yield the gradient

@�p(�d)

@�d
=

@p(�d)

@�d
2 Rn�m�s (12)
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by performing n �m runs of the adjoint model (11). Each adjoint run i is seeded with the i-th
unit vector~i 2 Rn�m, where~i is a vector of 0s, except for the i-th variable, which is a 1 :

p(1) = ~i =

0
BBBBBBBBB@

0
...
0
1
0
...
0

1
CCCCCCCCCA

: (13)

Analogously, the 1st order tanget model is given by

p(1) =
@�p

@�d
�d(1); (14)

which allows the computation of the gradient (12) by performing s runs with each run j seeded
with a unit vector ~j 2 Rs:

�d(1) = ~j: (15)

For the differentiation with AD, the cold-to-hot algorithm is not treated as a black box. No-
tably, the first step of the cold-to-hot transformation, the projection of FEM nodes onto the
surface (section 3.1), does not need to be differentiated. This is because the projection is per-
formed only to determine the foot points (uk; vk) of a corresponding FEM node dk. Differen-
tiating equations (6) and (7) is sufficient to compute the gradient (12). This is achieved using
the open-source AD tool CoDiPack [1] developed by the Chair for Scientific Computing at TU
Kaiserslautern, Germany. The results of the adjoint sensitivity computation compared against
finite difference (FD) approximations are presented in section 5.2.

5 RESULTS

In this section, test results of the implemented cold-to-hot transformation and its sensitivity
computation are presented. The selected test case is an axial fan blade geometry, which has
been used as a baseline geometry for an optimization in [2].

5.1 Cold-to-hot transformation results

The results of the cold-to-hot transformation of the axial fan are quantified by computing the
distance error between the deformed B-spline surface bS(u; v) and the displaced points d. The
error is computed in the same manner as in [5]:

�k = min
u;v2[0;1]

kdk � bS(u; v)k2; k = 0; :::; s� 1 (16)

The maximum and mean distance errors are computed as

�max = max
k

�k; �mean =
1

s

s�1X
k=0

�k: (17)

The deformations are visualized in figures 3 and 4, which show that the deformed blade geom-
etry in figures 3(b) and 4(b) follows the displacements given by the vectors in figures 3(a) and
4(a). Distance error results are summarized in table 1.
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(a) displacements vectors of FEM results (b) deformed blade: dark. original blade: light

Figure 3: axial fan cold-to-hot transformation

(a) displacements vectors of FEM results (b) deformed blade: dark. original blade: light

Figure 4: axial fan cold-to-hot transformation

Suction Side Pressure Side
�max[m] 2:83� 10�3 2:49� 10�3

�mean[m] 7:36� 10�5 7:53� 10�5

Table 1: Maximum distance error �max and mean distance error �mean of the axial fan blade

5.2 Sensitivity computation results

The cold-to-hot transformation was differentiated using CoDiPack in both forward and re-
verse mode to compute the 1st order sensitivities (12). The input variables are the FEM node
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displacements �d 2 Rs and the output variables are the updated control points p 2 Rn�m. The
number of control points n �m is less than the number of FEM nodes s, with

n �m = 1053; s = 8149: (18)

A finite-difference (FD) approximation of (12) would require 2�s runs of (10) and a forward AD
evaluation of the gradient requires s runs of the tangent model (14). On the other hand, comput-
ing (12) using reverse AD would require only n�m runs of the adjoint model (11). Thus, a faster
run time is expected and also observed for the adjoint AD computation compared to the FD ap-
proximations and tangent AD runs (see table 2). The relative run time results are compared
to the measured cost of the primal computation of the control point displacements, excluding
the FEM node projection, cost(P ) � 4:52 seconds. Note that in the final application of the
adjoint cold-to-hot chain, only a single adjoint computation of the cold-to-hot transformation is
necessary for each output parameter of the entire chain.

FD forward AD reverse AD
absolute run time [min] 83:57 98:06 11:94
relative run time 1110:42 � cost(P ) 1303:04 � cost(P ) 158:61 � cost(P )

Table 2: run time comparison of FD vs forward AD vs reverse AD for the 1st order sensitivities (12), with
cost(P ) � 4:52 seconds

Figures 5(a) and 5(b) present a comparison between gradients computed using FD, forward
AD, and reverse AD for selected rows r and columns k of @pr

@�dk
. The plots show a good agree-

ment between the FD and AD computed values with discrepancies between FD and AD at
values of around O(10�10) in figure 5(a). A maximum discrepancy of O(10�6) and a mean
discrepancy of O(10�13) between FD and AD was computed for the entire matrix (12). A
visualization of the 1st-order sensitivities of a single control point with respect to the FEM
displacements �d is shown in figure 6.
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Figure 5: Comparison of FD vs forward AD vs reverse AD on a semi-logarithmic plot row of @pr
@�d
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Figure 6: 1st-order sensitivities with respect to �d of center control point, denoted by �

6 CONCLUSIONS

With the implementation and adjoint differentiation of the cold-to-hot transformation, an im-
portant component of the cold-to-hot chain was addressed. The AD computed sensitivities agree
well with the FD computed sensitivities, paving the way towards an adjoint multidisiplinary op-
timization for turbomachinery components. Further work could involve a local error reduction
in the cold-to-hot transformation, as well as the inclusion of pressure forces in the cold-to-hot
transformation to couple the fluid and solid computations. An adjoint differentiation of a CSM
solver is the next key component of the cold-to-hot chain that is to be implemented.
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8 NOMENCLATURE

J 2 Rc cost function
J(1) 2 R

c adjoint cost function
x; � 2 Rd design parameters
x(1) 2 R

d adjoint design parameters
S; Sc; bS 2 R B-spline surface (initial, cold state, deformed)
Np; N q 2 R B-spline basis functions
p; q 2 N B-spline basis function orders
u; v 2 R B-spline foot points
p0i;j; pi;j 2 R

3 control points (initial, displaced)
p(1);i;j 2 R3 tangent control points
p(1);i;j 2 R

3 adjoint control points
�pi;j 2 R

3 control point displacements
n �m 2 N number of control points
d0
k; dk 2 R

3 FEM nodes (initial, displaced)
�dk 2 R

3 FEM node displacements
�d(1);k 2 R3 tangent FEM node displacements
�d(1);k 2 R

3 adjoint FEM node displacements
s 2 N number of FEM nodes
Kedge set of FEM nodes along surface edge
Kinner set of inner FEM nodes
�max 2 R maximum von Mises stres

s solid mesh
Fc 2 R

3 centrifugal forces
~i 2 Rn�m i-th unit vector
~j 2 Rs j-th unit vector
�k; �max; �mean 2 R distance error (k-th, maximum, mean)
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